
Page 1 of 77

Software Engineering Notes

Software and Software Engineering

Overview

 Software is designed and built by software engineers.

 Software is used by virtually everyone in society.

 Software is pervasive in our commerce, our culture, and our everyday lives.

 Software engineers have a moral obligation to build reliable software that does no harm to

other people.

 Software engineers view computer software, as being made up of the programs, documents,

and data required to design and build the system.

 Software users are only concerned with whether or not software products meet their

expectations and make their tasks easier to complete.

Important Questions for Software Engineers

 Why does it take so long to get software finished?

 Why are development costs so high?

 Why can’t we find all errors before we give the software to our customers?

 Why do we spend so much time and effort maintaining existing programs?

 Why do we continue to have difficulty in measuring progress as software is being developed?

Software

 Software is both a product and a vehicle for delivering a product (information).

 Software is engineered not manufactured.

 Software does not wear out, but it does deteriorate.

 Industry is moving toward component-based software construction, but most software is still

custom-built.

Software Application Domains

 System software

 Application software

 Engineering or Scientific Software

 Embedded software

 Product-line software (includes entertainment software)

 Web-Applications

 Artificial intelligence software

New Software Challenges

 Open-world computing

Page 2 of 77

o Creating software to allow machines of all sizes to communicate with each other

across vast networks

 Netsourcing

o Architecting simple and sophisticated applications that benefit targeted end-user

markets worldwide

 Open Source

o Distributing source code for computing applications so customers can make local

modifications easily and reliably

Reasons for Legacy System Evolution

 Software must be adapted to meet needs of new computing environments or technology

 Software must be enhanced to implement new business requirements

 Software must be extended to make it interoperable with more modern system components

 Software must be re-architected to make it viable within a network environment

Unique Nature of Web Apps

 Network intensive

 Concurrency

 Unpredictable load

 Availability (24/7/365)

 Data driven

 Content sensitive

 Continuous evolution

 Immediacy (short time to market)

 Security

 Aesthetics

Software Engineering Realities

 Problem should be understood before software solution is developed

 Design is a pivotal activity

 Software should exhibit high quality

 Software should be maintainable

Software Engineering

 Software engineering is the establishment of sound engineering principles in order to obtain

reliable and efficient software in an economical manner.

 Software engineering is the application of a systematic, disciplined, quantifiable approach to

the development, operation, and maintenance of software.

 Software engineering encompasses a process, management techniques, technical methods,

and the use of tools.

Page 3 of 77

Generic Software Process Framework

 Communication (customer collaboration and requirement gathering)

 Planning (establishes engineering work plan, describes technical risks, lists resources

required, work products produced, and defines work schedule)

 Modeling (creation of models to help developers and customers understand the requires and

software design)

 Construction (code generation and testing)

 Deployment (software delivered for customer evaluation and feedback)

Software Engineering Umbrella Activities

 Software project tracking and control (allows team to assess progress and take corrective

action to maintain schedule)

 Risk management (assess risks that may affect project outcomes or quality)

 Software quality assurance (activities required to maintain software quality)

 Technical reviews (assess engineering work products to uncover and remove errors before

they propagate to next activity)

 Measurement (define and collect process, project, and product measures to assist team in

delivering software meeting customer needs)

 Software configuration management (manage effects of change)

 Reusability management (defines criteria for work product reuse and establish mechanisms

to achieve component reuse)

 Work product preparation and production (activities to create models, documents, logs,

forms, lists, etc.)

Attributes for Comparing Process Models

 Overall flow and level of interdependencies among tasks

 Degree to which work tasks are defined within each framework activity

 Degree to which work products are identified and required

 Manner in which quality assurance activities are applied

 Manner in which project tracking and control activities are applied

 Overall degree of detail and rigor of process description

 Degree to which stakeholders are involved in the project

 Level of autonomy given to project team

 Degree to which team organization and roles are prescribed

Essence of Practice

 Understand the problem (communication and analysis)

 Plan a solution (software design)

 Carry out the plan (code generation)

 Examine the result for accuracy (testing and quality assurance)

Page 4 of 77

Understand the Problem

 Who are the stakeholders?

 What functions and features are required to solve the problem?

 Is it possible to create smaller problems that are easier to understand?

 Can a graphic analysis model be created?

Plan the Solution

 Have you seen similar problems before?

 Has a similar problem been solved?

 Can readily solvable subproblems be defined?

 Can a design model be created?

Carry Out the Plan

 Does solution conform to the plan?

 Is each solution component provably correct?

Examine the Result

 Is it possible to test each component part of the solution?

 Does the solution produce results that conform to the data, functions, and features required?

Software Practice Core Principles

1. Software exists to provide value to its users

2. Keep it simple stupid (KISS)

3. Clear vision is essential to the success of any software project

4. Always specify, design, and implement knowing that someone else will have to understand

what you have done to carry out his or her tasks

5. Be open to future changes, don’t code yourself into a corner

6. Planning ahead for reuse reduces the cost and increases the value of both the reusable

components and the systems that require them

7. Placing clear complete thought before any action almost always produces better results

Software Creation

 Almost every software project is precipitated by a business need (e.g. correct a system defect,

adapt system to changing environment, extend existing system, create new system)

 Many times an engineering effort will only succeed if the software created for the project

succeeds

 The market will only accept a product is the software embedded within it meets the

customer’s stated or unstated needs

Page 5 of 77

Process Models

Overview

 The roadmap to building high quality software products is software process.

 Software processes are adapted to meet the needs of software engineers and managers as they

undertake the development of a software product.

 A software process provides a framework for managing activities that can very easily get out

of control.

 Modern software processes must be agile, demanding only those activities, controls, and

work products appropriate for team or product.

 Different types of projects require different software processes.

 The software engineer's work products (programs, documentation, data) are produced as

consequences of the activities defined by the software process.

 The best indicators of how well a software process has worked are the quality, timeliness,

and long-term viability of the resulting software product.

Software Process

 Framework for the activities, actions, and tasks required to build high quality software

 Defines approach taken as software is engineered

 Adapted by creative, knowledgeable software engineers so that it is appropriate for the

products they build and the demands of the marketplace

Generic Process Framework

 Communication

 Planning

 Modeling

 Construction

 Deployment

Umbrella Activities (applied throughout process)

 Software project tracking and control

 Risk management

 Software quality assurance

 Formal technical reviews

 Measurement

 Software configuration management

 Reusability management

 Work product preparation and production

Process Flow

 Describes how each of the five framework activities, actions, and tasks are organized with

respect to sequence and time

Page 6 of 77

 Linear process flow executes each of the framework activities in order beginning with

communication and ending with deployment

 Iterative process flow executes the activities in a circular manner creating a more complete

version of the software with each circuit or iteration

 Parallel process flow executes one on more activities in parallel with other activities

Task Sets

 Each software engineering action associated with a framework activity can be represented by

different task sets

 Small one person projects do not require task sets that are as large and detailed as complex

projects team oriented project task sets

 Task sets are adapted to meet the specific needs of a software project and the project team

characteristics

Process Patterns

 Templates or methods for describing project solutions within the context of software

processes

 Software teams can combine patterns to construct processes that best meet the needs of

specific projects

Process Pattern Template

 Meaningful pattern name

 Forces (environment in which the pattern is encountered and indicators that make problems

visible and affect their solution)

 Type

o Stage patterns (define problems with a framework activity for the process)

o Task patterns (define problems associated with engineering action or work task

relevant to successful software engineering practice)

o Phase patterns (define the sequence or flow of framework activities that occur within

a process)

 Initial context (describes conditions that must be present prior to using pattern)

o What organizational or team activities have taken place?

o What is the entry state for the process?

o What software engineering or project information already exists?

 Solution (describes how to implement pattern correctly)

 Resulting context (describes conditions that result when pattern has been implemented

successfully)

o What organization or team activities must have occurred?

o What is the exit state for the process?

o What software engineering information of project information has been developed?

 Related patterns (links to patterns directly related to this one)

 Known uses/examples (instances in which pattern is applicable)

Page 7 of 77

Process Assessment and Improvement

 Standard CMMI Assessment Method for Process Improvement (SCAMPI) provides a five

step process assessment model that incorporates five phases (initiating, diagnosing,

establishing, acting, learning)

 CMM-Based Appraisal for Internal Process Improvement (CBAIPI) provides diagnostic

technique for assessing the relative maturity of a software organization

 SPICE (ISO/IE15504) standard defines a set of requirements for process assessment

 ISO 9001:2000 for Software defines requirements for a quality management system that will

produce higher quality products and improve customer satisfaction

Prescriptive Process Models

 Originally proposed to bring order to the chaos of software development

 They brought to software engineering work and provide reasonable guidance to software

teams

 They have not provided a definitive answer to the problems of software development in an

ever changing computing environment

Software Process Models

 Waterfall Model (classic life cycle - old fashioned but reasonable approach when

requirements are well understood)

 Incremental Models (deliver software in small but usable pieces, each piece builds on pieces

already delivered)

 Evolutionary Models

o Prototyping Model (good first step when customer has a legitimate need, but is clueless

about the details, developer needs to resist pressure to extend a rough prototype into a

production product)

o Spiral Model (couples iterative nature of prototyping with the controlled and systematic

aspects of the Waterfall Model)

 Concurrent Development Model (concurrent engineering - allows software teams to represent

the iterative and concurrent element of any process model)

Specialized Process Models

 Component-Based Development (spiral model variation in which applications are built

from prepackaged software components called classes)

 Formal Methods Model (rigorous mathematical notation used to specify, design, and

verify computer-based systems)

 Aspect-Oriented Software Development (aspect-oriented programming - provides a

process for defining, specifying, designing, and constructing software aspects like user

interfaces, security, and memory management that impact many parts of the system being

developed)

Unified Process

 Use-case driven, architecture centric, iterative, and incremental software process

Page 8 of 77

 Attempts to draw on best features of traditional software process models and implements

many features of agile software development

 Phases

o Inception phase (customer communication and planning)

o Elaboration phase (communication and modeling)

o Construction phase

o Transition phase (customer delivery and feedback)

o Production phase (software monitoring and support)

Personal Software Process (PSP)

 Emphasizes personal measurement of both work products and the quality of the work

products

 Stresses importance of indentifying errors early and to understand the types of errors likely to

be made

 Framework activities

o Planning (size and resource estimates based on requirements)

o High-level design (external specifications developed for components and component

level design is created)

o High-level design review (formal verification methods used to uncover design errors,

metrics maintained for important tasks)

o Development (component level design refined, code is generated, reviewed,

compiled, and tested, metric maintained for important tasks and work results)

o Postmortem (effectiveness of processes is determined using measures and metrics

collected, results of analysis should provide guidance for modifying the process to

improve its effectiveness)

Team Software Process

 Objectives

o Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans

o Show managers how to coach and motivate their teams and maintain peak

performance

o Accelerate software process improvement by making CCM Level 5 behavior normal

and expected

o Provide improvement guidance to high-maturity organizations

o Facilitate university teaching of industrial team skills

 Scripts for Project Activities

o Project launch

o High Level Design

o Implementation

o Integration and system testing

o Postmortem

Process Technology Tools

 Used to adapt process models to be used by software project team

Page 9 of 77

 Allow organizations to build automated models of common process framework, task sets,

and umbrella activities

 These automated models can be used to determine workflow and examine alternative process

structures

 Tools can be used to allocate, monitor, and even control all software engineering tasks

defined as part of the process model

Agile Development

Overview

 Agile software engineering represents a reasonable compromise between to conventional

software engineering for certain classes of software and certain types of software projects

 Agile development processes can deliver successful systems quickly

 Agile development stresses continuous communication and collaboration among developers

and customers

 Agile software engineering embraces a philosophy that encourages customer satisfaction,

incremental software delivery, small project teams (composed of software engineers and

stakeholders), informal methods, and minimal software engineering work products

 Agile software engineering development guidelines stress on-time delivery of an operational

software increment over analysis and design (the only really important work product is an

operational software increment)

Manifesto for Agile Software Development

 Proposes that it may be better to value:

o Individuals and interactions over processes and tools

o Working software over comprehensive documentation

o Customer collaboration over contract negotiation

o Responding to change over following a plan

 While the items on the right are still important the items on the left are more valuable under

this philosophy

Agility

 An agile team is able to respond to changes during project development

 Agile development recognizes that project plans must be flexible

 Agility encourages team structures and attitudes that make communication among developers

and customers more facile

 Eliminates the separation between customers and developers

 Agility emphasizes the importance of rapid delivery of operational software and de-

emphasizes importance of intermediate work products

 Agility can be applied to any software process as long as the project team is allowed to

streamline tasks and conduct planning in way that eliminate non-essential work products

 The costs of change increase rapidly as a project proceeds to completion, the earlier a change

is made the less costly it will be

 Agile processes may flatten the cost of change curve by allowing a project team to make

changes late in the project at much lower costs

Page 10 of 77

Agile Processes

 Are based on three key assumptions

1. It is difficult to predict in advance which requirements or customer priorities will change

and which will not

2. For many types of software design and construction activities are interleaved

(construction is used to prove the design)

3. Analysis, design, and testing are not as predictable from a planning perspective as one

might like them to be

 Agile processes must be adapt incrementally to manage unpredictability

 Incremental adaptation requires customer feedback based on evaluation of delivered software

increments (executable prototypes) over short time periods

Agility Principles

1. Highest priority is to satisfy customer through early and continuous delivery of valuable

software

2. Welcome changing requirements even late in development, accommodating change is

viewed as increasing the customer’s competitive advantage

3. Delivering working software frequently with a preference for shorter delivery schedules (e.g.

every 2 or 3 weeks)

4. Business people and developers must work together daily during the project

5. Build projects around motivated individuals, given them the environment and support they

need, trust them to get the job done

6. Face-to-face communication is the most effective method of conveying information within

the development team

7. Working software is the primary measure of progress

8. Agile processes support sustainable development, developers and customers should be able

to continue development indefinitely

9. Continuous attention to technical excellence and good design enhances agility

10. Simplicity (defined as maximizing the work not done) is essential

11. The best architectures, requirements, and design emerge from self-organizing teams

12. At regular intervals teams reflects how to become more effective and adjusts its behavior

accordingly

Human Factors

 Traits that need to exist in members of agile development teams:

o Competence

o Common focus

o Collaboration

o Decision-making ability

o Fuzzy-problem solving ability

o Mutual trust and respect

o Self-organization

Agile Process Models

Page 11 of 77

 Extreme Programming (XP)

 Adaptive Software Development (ASD)

 Scrum

 Dynamic Systems Development Method (DSDM)

 Crystal

 Feature Driven Development (FDD)

 Lean Software Development (LSD)

 Agile Modeling (AM)

 Agile Unified Process (AUP)

Extreme Programming

 Relies on object-oriented approach

 Values

o Communication (close, informal between developers and stakeholders)

o Simplicity (developers design for current needs, not future needs)

o Feedback (implemented software – unit tests, customer – user stories guide

acceptance tests, software team – iterative planning)

o Courage (design for today not tomorrow)

o Respect (stakeholders and team members for the software product)

 Key activities

o Planning (user stories created and ordered by customer values)

o Design (simple designs preferred, CRC cards and design prototypes are only work

products, encourages use of refactoring)

o Coding (focuses on unit tests to exercise stories, emphasizes use of pairs

programming to create story code, continuous integration and smoke testing is

utilized)

o Testing (unit tests created before coding are implemented using an automated testing

framework to encourage use of regression testing, integration and validation testing

done on daily basis, acceptance tests focus on system features and functions viewable

by the customer)

Industrial XP

 Readiness acceptance

o Does an appropriate development environment exists to support IXP?

o Will the team be populated by stakeholders?

o Does the organization have a distinct quality program that support continuous process

improvement?

o Will the organizational culture support new values of the agile team?

o Will the broader project community be populated appropriately?

 Project community (finding the right people for the project team)

 Project chartering (determining whether or not an appropriate business justification exists to

justify the project)

 Test-driven management (used to establish measurable destinations and criteria for

determining when each is reached)

 Retrospectives (specialized technical review focusing on issues, events, and lessons-learned

across a software increment or entire software release)

 Continuous learning (vital part of continuous process improvement)

Page 12 of 77

XP Issues

 Requirement volatility (can easily lead for scope creep that causes changes to earlier work

design for the then current needs)

 Conflicting customer needs (many project with many customers make it hard to assimilate all

customer needs)

 Requirements expressed informally (with only user stories and acceptance tests, its hard to

avoid omissions and inconsistencies)

 Lack of formal design (complex systems may need a formal architectural design to ensure a

product that exhibits quality and maintainability)

Adaptive Software Development

 Self-organization arises when independent agents cooperate to create a solution to a problem

that is beyond the capability of any individual agent

 Emphasizes self-organizing teams, interpersonal collaboration, and both individual and team

learning

 Adaptive cycle characteristics

o Mission-driven

o Component-based

o Iterative

o Time-boxed

o Risk driven and change-tolerant

 Phases

o Speculation (project initiated and adaptive cycle planning takes place)

o Collaboration (requires teamwork from a jelled team, joint application development is

preferred requirements gathering approach)

o Learning (components implemented and testes, focus groups provide feedback,

formal technical reviews, postmortems)

Scrum

 Scrum principles

o Small working team used to maximize communication, minimize overhead, and

maximize sharing of informal knowledge

o Process must be adaptable to both technical and business challenges to ensure best

product produced

o Process yields frequent increments that can be inspected, adjusted, tested,

documented and built on

o Development work and people performing it are partitioned into clean, low coupling

partitions

o Testing and documentation is performed as the product is built

o Provides the ability to declare the product done whenever required

 Process patterns defining development activities

o Backlog (prioritized list of requirements or features the provide business value to

customer, items can be added at any time)

o Sprints (work units required to achieve one of the backlog items, must fir into a

predefined time-box, affected backlog items frozen)

Page 13 of 77

o Scrum meetings (15 minute daily meetings)

 What was done since last meeting?

 What obstacles were encountered?

 What will be done by the next meeting?

o Demos (deliver software increment to customer for evaluation)

Dynamic Systems Development Method

 Provides a framework for building and maintaining systems which meet tight time

constraints using incremental prototyping in a controlled environment

 Uses Pareto principle (80% of project can be delivered in 20% required to deliver the entire

project)

 Each increment only delivers enough functionality to move to the next increment

 Uses time boxes to fix time and resources to determine how much functionality will be

delivered in each increment

 Guiding principles

o Active user involvement

o Teams empowered to make decisions

o Fitness foe business purpose is criterion for deliverable acceptance

o Iterative and incremental develop needed to converge on accurate business solution

o All changes made during development are reversible

o Requirements are baselined at a high level

o Testing integrates throughout life-cycle

o Collaborative and cooperative approach between stakeholders

 Life cycle activities

o Feasibility study (establishes requirements and constraints)

o Business study (establishes functional and information requirements needed to

provide business value)

o Functional model iteration (produces set of incremental prototypes to demonstrate

functionality to customer)

o Design and build iteration (revisits prototypes to ensure they provide business value

for end users, may occur concurrently with functional model iteration)

o Implementation (latest iteration placed in operational environment)

Crystal

 Development approach that puts a premium on maneuverability during a resource-limited

game of invention and communication with the primary goal of delivering useful software

and a secondary goal of setting up for the next game

 Incremental development strategy used with 1 to 3 month time lines

 Reflection workshops conducted before project begins, during increment development

activity, and after increment is delivered

Feature Driven Development

 Practical process model for object-oriented software engineering

 Feature is a client-valued function, can be implemented in two weeks or less

 FDD Philosophy

Page 14 of 77

o Emphasizes collaboration among team members

o Manages problem and project complexity using feature-based decomposition

followed integration of software increments

o Technical communication using verbal, graphical, and textual means

o Software quality encouraged by using incremental development, design and code

inspections, SQA audits, metric collection, and use of patterns (analysis, design,

construction)

 Framework activities

o Develop overall model (contains set of classes depicting business model of

application to be built)

o Build features list (features extracted from domain model, features are categorized

and prioritized, work is broken up into two week chunks)

o Plan by feature (features assessed based on priority, effort, technical issues, schedule

dependencies)

o Design by feature (classes relevant to feature are chosen, class and method prologs

are written, preliminary design detail developed, owner assigned to each class, owner

responsible for maintaining design document for his or her own work packages)

o Build by feature (class owner translates design into source code and performs unit

testing, integration performed by chief programmer)

Lean Software Development Principles

 Eliminate waste

 Build quality in

 Create knowledge

 Defer commitment

 Deliver fast

 Respect people

 Optimize the whole

Agile Modeling

 Practice-based methodology for effective modeling and documentation of software systems

in a light-weight manner

 Modeling principles

o Model with a purpose

o Use multiple models

o Travel light (only keep models with long-term value)

o Content is more important than representation

o Know the models and tools you use to create them

o Adapt locally

 Requirements gathering and analysis modeling

o Work collaboratively to find out what customer wants to do

o Once requirements model is built collaborative analysis modeling continues with the

customer

 Architectural modeling

o Derives preliminary architecture from analysis model

o Architectural model mist be realistic for the environment and must be understandable

by developers

Page 15 of 77

Agile Unified Process

 Adopts classic UP phased activities (inception, elaboration, construction, transition) to enable

team to visualize overall software project flow

 Within each activity team iterates to achieve agility and delivers meaningful software

increments to end-users as rapidly as possible

 Each AUP iteration addresses

o Modeling (UML representations of business and problem domains)

o Implementation (models translated into source code)

o Testing (uncover errors and ensure source code meets requirements)

o Deployment (software increment delivery and acquiring feedback)

o Configuration and project management (change management, risk management,

persistent work product control)

o Environment management (standards, tools, technology)

Principles that Guide Practice

Overview

This chapter describes professional practice as the concepts, principles, methods, and tools used

by software engineers and managers to plan and develop software. Software engineers must be

concerned both with the technical details of doing things and the things that are needed to build

high-quality computer software. Software process provides the project stakeholders with a

roadmap to build quality products. Professional practice provides software engineers with the

detail needed to travel the road. Software practice encompasses the technical activities needed to

produce the work products defined by the software process model chosen for a project.

Software Practice Core Principles

8. Software exists to provide value to its users

9. Keep it simple stupid (KISS)

10. Clear vision is essential to the success of any software project

11. Always specify, design, and implement knowing that someone else will have to understand

what you have done to carryout his or her tasks

12. Be open to future changes, don’t code yourself into a corner

13. Planning ahead for reuse reduces the cost and increases the value of both the reusable

components and the systems that require them

14. Placing clear complete thought before any action almost always produces better results

Principles that Guide Process

1. Be agile

2. Focus on quality at every step

3. Be ready to adapt

4. Build an effective team

5. Establish mechanisms for communications and control

6. Manage change

7. Assess risk

8. Create work products that provide value for others

Page 16 of 77

Principles that Guide Practice

1. Divide and conquer

2. Understand the use of abstraction

3. Strive for consistency

4. Focus of the transfer of information

5. Build software that exhibits effective modularity

6. Look for patterns

7. When possible, represent the problem and its solution from a number of different

perspectives

8. Remember that someone will maintain the software

Principles of Effective Communication

1. Listen

2. Prepare before you communicate

3. Have a facilitator for any communication meeting

4. Face-to-face communication is best

5. Take notes and document decisions

6. Strive for collaboration

7. Stay focused and modularize your discussion

8. Draw a picture if something is unclear

9. Move on once you agree, move on when you can’t agree, move on if something unclear can’t

be clarified at the moment

10. Negotiation is not a contest or game

Planning Principles

1. Understand scope of project

2. Involve customer in planning activities

3. Recognize that planning Is iterative

4. Make estimates based on what you know

5. Consider risk as you define the plan

6. Be realistic

7. Adjust the granularity as you define the plan

8. Define how you intend to measure quality

9. Describe how you intend to accommodate change

10. Track the plan frequently and make adjustments as required

Modeling Classes

 Requirements (analysis) models – represent customer requirements by depicting the software

in three domains (information, function, behavior)

 Design models – represent characteristics of software that help practitioners to construct s it

effectively (architecture, user interface, component-level detail)

Page 17 of 77

Requirements Modeling Principles

1. Problem information domain must be represented and understood

2. Functions performed by the software must be defined

3. Software behavior must be represented as a consequence of external events

4. Models depicting the information, function, and behavior must be partitioned in manner that

uncovers detail in a hierarchical fashion

5. The analysis task should move from essential information toward implementation detail

Design Modeling Principles

1. Design should be traceable to the requirements model

2. Always consider the architecture of the system to be built

3. Data design is as important as algorithm design

4. Internal and external interfaces must be design with care

5. User interface design should be tuned to the needs of the end-user and must focus on use of

use

6. Component-level design should be functionally independent

7. Components should be loosely coupled to one another and to the external environment

8. Design representations should be easy to understand

9. Design should be developed iteratively and designer should strive to simplify design with

each iteration

Agile Modeling Principles

1. Primary goal of the software team is to build software not create models

2. Don’t create any more models than you have to

3. Strive to produce the simplest model that will describe the problem or software

4. Build models in a way that makes them amenable to change

5. Be able to state the explicit purpose for each model created

6. Adapt models to the system at hand

7. Try to build useful models, forget about trying to build perfect models

8. Don’t be dogmatic about model syntax as long as the model communicates content

successfully

9. If your instincts tell you there is something wrong with the model then you probably have a

reason to be concerned

10. Get feedback as soon as you can

Construction Activities

 Coding includes

o Direct creation of programming language source code

o Automatic generation of source code using a design-like representation of component

to be built

o Automatic generation of executable code using a “fourth generation programming

language

 Testing levels

o Unit testing

o Integration testing

Page 18 of 77

o Validation testing

o Acceptance testing

Coding Principles

 Preparation - before writing any code be sure you:

o Understand problem to solve

o Understand basic design principles

o Pick a programming language that meets the needs of the software to be built and the

environment

o Select a programming environment that contains the right tools

o Create a set of unit tests to be applied once your code is completed

 Coding - as you begin writing code be sure you:

o Use structured programming practices

o Consider using pairs programming

o Select data structures that meet the needs of the design

o Understand software architecture and create interfaces consistent with the architecture

o Keep conditional logic as simple as possible

o Create nested loops in a way that allows them to be testable

o Select meaningful variable names consistent with local standards

o Write code that is self-documenting

o Use a visual layout for you code that aids understanding

 Validation - after your complete your first coding pass be sure you:

o Conduct a code walkthrough when appropriate

o Perform unit tests and correct uncovered errors

o Refactor the code

Testing Objectives

 Testing is the process of executing a program with the intent of finding an error

 A good test is one that has a high probability of finding an undiscovered error

 A successful test is one the uncovers and undiscovered error

Testing Principles

1. All tests should be traceable to customer requirements

2. Tests should be planed long before testing begins

3. Pareto Principle applies to testing (80% of errors are found in 20% of code)

4. Testing should begin “in the small” and progress toward testing “in the large”

5. Exhaustive testing is not possible

Deployment Actions

 Delivery

 Support

 Feedback

Page 19 of 77

Deployment Principles

1. Customer software expectations must be managed

2. Complete delivery package should be assembled and tested

3. Support regime must be established before software is delivered

4. Appropriate instructional materials must be supplied to end-users

5. Buggy software should be fixed before it is delivered

Understanding Requirements

Overview

 Requirements engineering helps software engineers better understand the problems they are

trying to solve.

 Building an elegant computer solution that ignores the customer’s needs helps no one.

 It is very important to understand the customer’s wants and needs before you begin designing

or building a computer-based solution.

 The requirements engineering process begins with inception, moves on to elicitation,

negotiation, problem specification, and ends with review or validation of the specification.

 The intent of requirements engineering is to produce a written understanding of the

customer’s problem.

 Several different work products might be used to communicate this understanding (user

scenarios, function and feature lists, analysis models, or specifications).

Requirements Engineering

 Must be adapted to the needs of a specific process, project, product, or people doing the

work.

 Begins during the software engineering communication activity and continues into the

modeling activity.

 In some cases requirements engineering may be abbreviated, but it is never abandoned.

 It is essential that the software engineering team understand the requirements of a problem

before the team tries to solve the problem.

Requirements Engineering Tasks

 Inception (software engineers use context-free questions to establish a basic understanding of

the problem, the people who want a solution, the nature of the solution, and the effectiveness

of the collaboration between customers and developers)

 Elicitation (find out from customers what the product objectives are, what is to be done, how

the product fits into business needs, and how the product is used on a day to day basis)

 Elaboration (focuses on developing a refined technical model of software function, behavior,

and information)

 Negotiation (requirements are categorized and organized into subsets, relations among

requirements identified, requirements reviewed for correctness, requirements prioritized

based on customer needs)

Page 20 of 77

 Specification (written work products produced describing the function, performance, and

development constraints for a computer-based system)

 Requirements validation (formal technical reviews used to examine the specification work

products to ensure requirement quality and that all work products conform to agreed upon

standards for the process, project, and products)

 Requirements management (activities that help project team to identify, control, and track

requirements and changes as project proceeds, similar to software configuration

management (SCM) techniques

Initiating Requirements Engineering Process

 Identify stakeholders

 Recognize the existence of multiple stakeholder viewpoints

 Work toward collaboration among stakeholders

 These context-free questions focus on customer, stakeholders, overall goals, and benefits of

the system

o Who is behind the request for work?

o Who will use the solution?

o What will be the economic benefit of a successful solution?

o Is there another source for the solution needed?

 The next set of questions enable developer to better understand the problem and the

customer’s perceptions of the solution

o How would you characterize good output form a successful solution?

o What problem(s) will this solution address?

o Can you describe the business environment in which the solution will be used?

o Will special performance constraints affect the way the solution os approached?

 The final set of questions focuses on communication effectiveness

o Are you the best person to give “official” answers to these questions?

o Are my questions relevant to your problem?

o Am I asking too many questions?

o Can anyone else provide additional information?

o Should I be asking you anything else?

Eliciting Requirements

 Goal is to identify the problem, propose solution elements, negotiate approaches, and specify

preliminary set of solutions requirements

 Collaborative requirements gathering guidelines

o Meetings attended by both developers and customers

o Rules for preparation and participation are established

o Flexible agenda is used

o Facilitator controls the meeting

o Definition mechanism (e.g. stickers, flip sheets, electronic bulletin board) used to

gauge group consensus

Quality function deployment (QFD)

 Quality management technique that translates customer needs into technical software

requirements expressed as a customer voice table

Page 21 of 77

 Identifies three types of requirements (normal, expected, exciting)

 In customer meetings function deployment is used to determine value of each function that

is required for the system

 Information deployment identifies both data objects and events that the system must

consume or produce (these are linked to functions)

 Task deployment examines the system behavior in the context of its environment

 Value analysis is conducted to determine relative priority of each requirement generated by

the deployment activities

Elicitation Work Products

 Statement of need and feasibility

 Bounded statement of scope for system or product

 List of stakeholders involved in requirements elicitation

 Description of system’s technical environment

 List of requirements organized by function and applicable domain constraints

 Set of usage scenarios (use-cases) that provide use insight into operation of deployed system

 Prototypes developed to better understand requirements

Elicitation Problems

 Scope – system boundaries ill-defined

 Understanding – customers not sure what’s needed or can’t communicate it

 Volatility – requirements changes over time

Developing Use-Cases

 Each use-case tells stylized story about how end-users interact with the system under a

specific set of circumstances

 First step is to identify actors (people or devices) that use the system in the context of the

function and behavior of the system to be described

o Who are the primary (interact with each other) or secondary (support system) actors?

o What are the actor’s goals?

o What preconditions must exist before story begins?

o What are the main tasks or functions performed by each actor?

o What exceptions might be considered as the story is described?

o What variations in actor interactions are possible?

o What system information will the actor acquire, produce, or change?

o Will the actor need to inform the system about external environment changes?

o What information does the actor desire from the system?

o Does the actor need to be informed about unexpected changes?

 Next step is to elaborate the basic use case to provide a more detailed description needed to

populate a use-case template

Page 22 of 77

Use-case template

 Use Case Name

 Primary actor

 Goal in context

 Preconditions

 Trigger

 Scenario details

 Exceptions

 Priority

 When available

 Frequency of use

 Channel to actor

 Secondary actors

 Channels to secondary actors

 Open issues

Analysis Model

 Intent is to provide descriptions of required information, functional, and behavioral domains

for computer-based systems

 Analysis Model Elements

o Scenario-based elements (use cases describe system from user perspective)

o Class-based elements (relationships among objects manipulated by actors and their

attributes are depicted as classes)

o Behavioral elements (depict system and class behavior as states and transitions

between states)

o Flow-oriented elements (shows how information flows through the system and is

transformed by the system functions)

Analysis Patterns

 Suggest solutions (a class, a function, or a behavior) that can be reused when modeling future

applications

 Can speed up the development of abstract analysis models by providing reusable analysis

models with their advantages and disadvantages

 Facilitate the transformation of the analysis model into a design model by suggesting design

patterns and reliable solutions to common patterns

Negotiating Requirements

 Intent is to develop a project plan that meets stakeholder needs and real-world constraints

(time, people, budget) placed on the software team

 Negotiation activities

o Identification of system key stakeholders

o Determination of stakeholders’ “win conditions”

o Negotiate to reconcile stakeholders’ win conditions into “win-win” result for all

stakeholders (including developers)

Page 23 of 77

 Goal is to produce a win-win result before proceeding to subsequent software engineering

activities

Requirement Review (Validation)

 Is each requirement consistent with overall project or system objective?

 Are all requirements specified at the appropriate level off abstraction?

 Is each requirement essential to system objective or is it an add-on feature?

 Is each requirement bounded and unambiguous?

 Do you know the source for each requirement?

 Do requirements conflict with one another?

 Is each requirement achievable in the technical environment that will house the system or

product?

 Is each requirement testable once implemented?

 Does the requirements model reflect the information, function, and behavior of the system to

be built?

 Has the requirements model been partitioned in a way that exposes more detailed system

information progressively?

 Have all the requirements patterns been properly validated and are they consistent with

customer requirements?

Requirements Modeling

The requirements model is the first technical representation of a system. Requirements modeling

process uses a combination of text and diagrams to represent software requirements (data,

function, and behavior) in an understandable way. Software engineers build requirements models

using requirements elicited from customers. Building analysis models helps to make it easier to

uncover requirement inconsistencies and omissions. This chapter covers three perspectives of

requirements modeling: scenario-based, data (information), and class-based. Requirements

modeling work products must be reviewed for completeness, correctness, and consistency.

Requirements Models

 Scenario-based (system from the user’s point of view)

 Data (shows how data are transformed inside the system)

 Class-oriented (defines objects, attributes, and relationships)

 Flow-oriented (shows how data are transformed inside the system)

 Behavioral (show the impact of events on the system states)

Requirements Model Objectives

 Describe what the customer requires.

 Establish a basis for the creation of a software design.

 Devise a set of requirements that can be validated once the software is built.

Analysis Model Rules of Thumb

Page 24 of 77

 The model should focus on requirements that are visible within the problem or business

domain and be written as a relatively high level of abstraction.

 Each element of the analysis model should add to the understanding of the requirements and

provide insight into the information domain, function, and behavior of the system.

 Delay consideration of infrastructure and other non-functional models until design.

 Minimize coupling throughout the system.

 Be certain the analysis model provides value to all stakeholders.

 Keep the model as simple as possible.

Domain Analysis

 Umbrella activity involving the Identification, analysis, and specification of common

requirements from a specific application domain, typically for reuse in multiple projects

 Object-oriented domain analysis involves the identification, analysis, and specification of

reusable capabilities within a specific application domain in terms of common objects,

classes, subassemblies, and frameworks

Requirements Modeling Approaches

 Structured analysis considers data and processes that transform data as separate entities

o Data objects are modeled to define their attributes and relationships

o Process are modeled to show how they transform data as it flows thought the system

 Object-oriented analysis focuses on the definition of classes and the manner in which they

collaborate to effect the customer requirements

Scenario-Based Modeling

 Makes use of use cases to capture the ways in which end-users will interact with the system

 UML requirements modeling begins with the creation of scenarios in the from of use cases,

activity diagrams, and swim lane diagrams

Developing Use Cases

 Use cases capture the interactions between actors (i.e. entities that consume or produce

information)

 Begin by listing the activities performed by a single actor to accomplish a single function

 Continue this process for each actor and each system function

 Use-cases are written first in narrative form and then mapped to a template if more formality

is required

 Each primary scenarios should be reviewed and refined to see if alternative interactions are

possible

o Can the actor take some other action at this point?

o Is it possible that the actor will encounter an error condition at some point? If so,

what?

o Is it possible that the actor will encounter some other behavior at some point? If so,

what?

Page 25 of 77

Exceptions

 Describe situations (failures or user choices) that cause the system to exhibit unusual

behavior

 Brainstorming should be used to derive a reasonably complete set of exceptions for each use

case

o Are there cases where a validation function occurs for the use case?

o Are there cases where a supporting function (actor) fails to respond appropriately?

o Can poor system performance result in unexpected or improper use actions?

 Handling exceptions may require the creation of additional use cases

UML Activity Diagrams

 Supplements use-case by providing graphical representation of the interaction flow within a

specific scenario

 Similar to flow chart

o Rounded rectangles used to represent functions

o Diamonds used to represent decision points

o Labeled arrows represent system flow

o Solid horizontal lines indicate parallel activities

UML Swimlane Diagrams

 Variation of activity diagrams used show flow of activities in use case as well as indicating

which actor has responsibility for activity rectangle actions

 Responsibilities are represented by parallel line segments that divide the diagram vertically

headed by the responsible actor

Data Objects

 Data object - any person, organization, device, or software product that produces or

consumes information

 Attributes - name a data object instance, describe its characteristics, or make reference to

another data object

 Relationships - indicate the manner in which data objects are connected to one another

Class-based Modeling

 Represents objects system manipulates, operations applied to objects, and collaborations

occurring between classes

 Elements of class model include: classes, objects, attributes, operations, CRC models,

collaboration diagrams, and packages

Page 26 of 77

Identifying Analysis Classes

 Examine the problem statement and try to find nouns that fit the following categories and

produce or consume information (i.e. grammatical parse)

o External entities (systems, devices, people)

o Things (e.g. reports, displays, letters, signals)

o Events occurring during system operation

o Roles (e.g. manager, engineer, salesperson)

o Organizational units (e.g. division, group, team)

o Places

o Structures (e.g. sensors, vehicles, computers)

Class Selection Criteria

 Consider whether each potential class satisfies one of these criteria as well

o Contains information that should be retained

o Provides needed services

o Contains multiple attributes

o Has common set of attributes that apply to all class instances

o Has common set of operations that apply to all object instances

o Represents external entity that produces or consumes information

Specifying Class Attributes

 Examine the processing narrative or use-case and select the things that reasonably can belong

to each class

 Ask what data items (either composite or elementary) fully define this class in the context of

the problem at hand?

Defining Operations

 Look at the verbs in the processing narrative and identify operations reasonably belonging to

each class that (i.e. grammatical parse)

o manipulate data

o perform computation

o inquire about the state of an object

o monitor object for occurrence of controlling event

 Divide operations into sub-operations as needed

 Also consider communications that need to occur between objects and define operations as

needed

Class-Responsibility-Collaborator (CRC) Modeling

 Develop a set of index cards that represent the system classes

 One class per card

Page 27 of 77

 Cards are divide into three sections (class name, class responsibilities, class collaborators)

 Once a complete CRC card set is developed it is reviewed examining the usage scenarios

Classes

 Entity classes extracted directly from problem statement (things stored in a database and

persist throughout application)

 Boundary classes used to create the interface that user sees and interacts with as software is

used

 Controller classes manage unit of work from start to finish

o Create or update entity objects

o Instantiate boundary objects

o Complex communication between sets of objects

o Validation of data communicated between actors

Allocating Responsibilities to Classes

 Distribute system intelligence evenly

 State each responsibility as generally as possible

 Information and its related behaviors should reside within the same class

 Localize all information about one thing in a single class

 Share responsibilities among related classes when appropriate

Collaborations

 Any time a class cannot fulfill a responsibility on its own it needs to interact with another

class

 A server object interacts with a client object to fulfill some responsibility

Reviewing CRC Models

 Each review participant is given a subset of the CRC cards (collaborating cards must be

separated)

 All use-case scenarios and use-case diagrams should be organized into categories

 Review leader chooses a use-case scenario and begins reading it out loud

 Each time a named object is read a token is passed to the reviewer holding the object's card

 When the reviewer receives the token, he or she is asked to describe the responsibilities listed

on the card

 The group determines whether one of the responsibilities on the card satisfy the use-case

requirement or not

 If the responsibilities and collaborations on the index card cannot accommodate the use-case

requirements then modifications need to be made to the card set

Associations and Dependencies

 Association - present any time two classes are related to one another in some fashion

Page 28 of 77

o association multiplicity or cardinality can be indicated in a UML class diagram (e.g.

0..1, 1..1, 0.., 1..)

 Dependency – client/server relationship between two classes

o dependency relationships are indicated in class diagrams using stereotype names

surrounded by angle brackets (e.g. <<stereotype>>)

Analysis Packages

 Categorization is an important part of analysis modeling

 Analysis packages are made up of classes having the same categorization

 In class diagrams visibility of class elements can be indicated using a + (public), - (private), #

(package)

Requirements Modeling

Requirements modeling has many different dimensions. The discussion in this chapter focuses

on flow-oriented models, behavioral models, and patterns. This chapter also discusses WebApp

requirements models. Flow-oriented modeling shows how data objects are transformed by

processing functions. Behavioral modeling depicts the systems states and the impact of events on

system states. Pattern-based modeling makes use of existing domain knowledge to facilitate

requirements modeling. Software engineers build models using requirements elicited from

stakeholders. Developer insights into software requirements grows in direct proportion to the

number of different representations used in modeling. It is not always possible to develop every

model for every project given the available project resources. Requirements modeling work

products must be reviewed for correctness, completeness, consistency, and relevancy to

stakeholder needs.

Flow-oriented Modeling

 Data flow diagrams (DFD) show the relationships of external entities, process or transforms,

data items, and data stores

 DFD’s take an input-process-output view of the system

 DFD's cannot show procedural detail (e.g. conditionals or loops) only the flow of data

through the software

 In DFD’s data objects are represented by labeled arrows and data transformations are

represented by circles

 First DFD (known as the level 0 or context diagram) represents system as a whole

 Subsequent data flow diagrams refine the context diagram providing increasing levels of

detail

 Refinement from one DFD level to the next should follow approximately a 1:5 ratio (this

ratio will reduce as the refinement proceeds)

Creating Data Flow Diagram

 Level 0 data flow diagram should depict the system as a single bubble

 Primary input and output should be carefully noted

 Refinement should begin by consolidating candidate processes, data objects, and data stores

to be represented at the next level

Page 29 of 77

 Label all arrows with meaningful names

 Information flow continuity must be maintained from one level to level

 Refine one bubble at a time

 Write a process specification (PSPEC) for each bubble in the final DFD

 PSPEC is a "mini-spec" describing the process algorithm written using text narrative, a

program design language (PDL), equations, tables, or UML activity diagrams

Creating Control Flow Model

 Begin by stripping all the data flow arrows form the DFD

 Events (solid arrows) and control items (dashed arrows) are added to the control flow

diagram (CFD)

 Create a control specification (CSPEC) for each bubble in the final CFD

 CSPEC contains a state diagram that is a sequential specification of the behavior and may

also contain a program activation table that is a combinatorial specification of system

behavior

Behavioral Modeling

 A state transition diagrams (STD) represents the system states and events that trigger state

transitions

 STD's indicate actions (e.g. process activation) taken as a consequence of a particular event

 A state is any observable mode of behavior

Creating Behavior Models

 Evaluate all use-cases to understand the sequence of interaction within the system

 Identify events that drive the interaction sequence and how these events relate to specific

objects

 Create a sequence or event-trace for each use-case

 Build a state transition diagram for the system

 Review the behavior model to verify accuracy and consistency

UML State Diagrams

 Round corned rectangles are used for each state

o Passive states show the current status of object attributes

o Active states indicate current status of object as it undergoes transformation or

processing

 Arrows connecting states are labeled with the name of the event that triggers the transition

from one state to the other

 Guards limiting the transition from one state to the next may be specified as Boolean

conditions involving object attributes in the use-case narratives

UML Sequence Diagrams

Page 30 of 77

 Built from use-case descriptions by determining how events cause transitions from one object

to another

 Key classes and actors are shown across the top

 Object and actor activations are shown as vertical rectangles arranged along vertical dashed

lines called lifelines

 Arrows connecting activations are labeled with the name of the event that triggers the

transition from one class or actor to another

 Object flow among objects and actors may be represented by labeling a dashed horizontal

line with the name of the object being passed

 States may be shown along the lifelines

Analysis Patterns

 Discovered (not created) during requirements engineering work

 Should be documented by describing the general problem pattern is applicable to, the

prescribed solution, assumptions, constraints, advantages, disadvantages, and references to

known examples

 Documented analysis patterns are stored in an indexed repository facilitate its reuse by other

team members

Conditions Favoring WebApp Requirements Modeling

 Large or complex WebApp to be built

 Large number of stakeholders

 Large number developers on WebApp team

 Development team members have not worked together before

 WebApp success will have strong bearing on success of company

WebApp Requirements Modeling

 Inputs – any information collected during communication activity

 Outptus – models for WebApp content, function, user interaction, environment, infrastructure

WebApp Requirements Models

 Content – content (text, graphics, images, audio, video) provided by WebApp

 Interaction – describes user interaction with WebApp

 Functional – defines operations applied to the WebApp content and other content

independent processing functions

 Navigation – defines overall navigation strategy for the WebApp

 Configuration – describes WebApp environmental infrastructure in detail

Content Model

 Structural elements that represent WebApp content requirements

 WebApp content objects – text, graphics, photographs, video images, audio

Page 31 of 77

 Includes all analysis classes – user visible entities created or manipulated as end-users

interact with WebApp

 Analysis classes defined by class diagrams showing attributes, operations, and class

collaborations

 Content model is derived from careful examination of WebApp use-cases

Interaction Model

 Use-cases – dominant element of WebApp interaction models

 Sequence diagrams – provide representation of manner in which user actions collaborate with

analysis classes

 State diagrams – indicates information required to move users between states and represents

behavioral information, can also depict potential navigation pathways

 User interface prototypes – layout of content presentation, interaction mechanisms, and

overall aesthetic of user interface

Functional Model

 User observable behavior delivered to WebApp end-users

 Operations contained in analysis classes to implement class behaviors

 UML activity diagrams used to model both

Configuration Model

 May be a list of server-side and client-side attributes for the WebApp

 UML deployment diagrams can be used for complex configuration architectures

Navigation Model

 Web engineers consider requirements that dictate how each type of user will navigate from

one content object to another

 Navigation mechanics are defined as part of design

 Web engineers and stakeholders must determine navigation requirements

Quality Concepts

Overview

This chapter provides an introduction to software quality. Software quality is the concern of

every software process stakeholder. If a software team stresses quality in all software

engineering activities, it reduces the amount of rework that must be done. This results in

lower costs and improved time-to-market. To achieve high quality software, four elements

must be present: proven software engineering process and practice, solid project

management, comprehensive quality control, and the presence of a quality assurance

infrastructure. Software that meets its customer’s needs, performs accurately and reliably,

and provides value to all who use it. Developers track quality by examining the results of all

Page 32 of 77

quality control activities. Developers measure quality by examining errors before delivery

and defects released to the field.

What is Quality?

 The transcendental view - quality is something that you immediately recognize, but cannot

explicitly define.

 The user view - quality in terms of meeting an end-user’s specific goals.

 The manufacturer’s view - quality in terms of the conformance to the original specification

of the product.

 The product view - quality can be tied to inherent characteristics (e.g., functions and features)

of a product.

 The value-based view - quality based on how much a customer is willing to pay for a

product.

 Quality of design - refers to characteristics designers specify for the end product to be

constructed

 Quality of conformance - degree to which design specifications are followed in

manufacturing the product

Software Quality

 Software quality defined as an effective software process applied in a manner that creates a

useful product that provides measurable value for those who produce it and those who use it.

 An effective software process establishes the infrastructure that supports any effort at

building a high quality software product.

 A useful product delivers the content, functions, and features that the end-user desires, but as

important, it delivers these assets in a reliable, error free way.

 By adding value for both the producer and user of a software product, high quality software

provides benefits for the software organization and the end-user community.

Garvin’s Quality Dimensions

 Performance quality

 Feature quality

 Reliability

 Conformance

 Durability

 Serviceability

 Aesthetics

 Perception

McCall’s Quality Factors

 Correctness - extent to which a program satisfies its specification and fulfills the

customer's mission objectives

Page 33 of 77

 Reliability - extent to which a program can be expected to perform its intended function

with required precision

 Efficiency - amount of computing resources and code required by a program to perform

its function

 Integrity - extent to which access to software or data by unauthorized persons can be

controlled

 Usability - effort required to learn, operate, prepare input for, and interpret output of a

program

 Maintainability - effort required to locate and fix an error in a program

 Flexibility - effort required to modify an operational program

 Testability - effort required to test a program to ensure that it performs its intended

function

 Portability - effort required to transfer the program from one hardware and/or software

system environment to another

 Reusability - extent to which a program [or parts of a program] can be reused in other

applications

 Interoperability. Effort required to couple one system to another

ISO 9126 Quality Factors

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

Measuring Quality

 General quality dimensions and factors are not adequate for assessing the quality of an

application in concrete terms

 Project teams need to develop a set of targeted questions to assess the degree to which each

quality factor has been satisfied in the application

 Subjective measures of software quality may be viewed as little more than personal opinion

 Software metrics represent indirect measures of some manifestation of quality and are an

attempt to quantify the assessment of software quality

 Software Quality Dilemma

 If you produce software with terrible quality you lose because no one will but it

 If you spend infinite time and money to create software you lose because you will go out of

business without bringing the software to market

 The trick is to balance the construction costs and the product quality

 Producing software using a “good enough” attitude may leave your production team exposed

to serious liability issues resulting from product failures after release

Page 34 of 77

 Developers need to realize the taking time to do things right mean that they don’t need to

find the resources to do it over again

Cost of Quality

 Prevention costs - quality planning, formal technical reviews, test equipment, training

 Appraisal costs - in-process and inter-process inspection, equipment calibration and

maintenance, testing

 Internal failure costs - rework, repair, failure mode analysis

 External failure costs - complaint resolution, product return and replacement, help line

support, warranty work

Low Quality Software

 Low quality software increases risks for both developers and end-users

 Risks are areas of uncertainty in the development process such that if they occur may result

in unwanted consequences or losses

 When systems are delivered late, fail to deliver functionality, and does not meet customer

expectations litigation ensues

 Low quality software is easier to hack and can increase the security risks for the application

once deployed

 A secure system cannot be built without focusing on quality (security, reliability,

dependability) during the design phase

 Low quality software is liable to contain architectural flaws as well as implementation

problems (bugs)

Impact of Management Actions

 Estimation decisions – irrational delivery date estimates cause teams to take short-cuts that

can lead to reduced product quality

 Scheduling decisions – failing to pay attention to task dependencies when creating the project

schedule may force the project team to test modules without their subcomponents and quality

may suffer

 Risk-oriented decisions – reacting to each crisis as it arises rather than building in

mechanisms to monitor risks and having established contingency plans may result in

products having reduced quality

Achieving Software Quality

 Software quality is the result of good project management and solid engineering practice

 To build high quality software you must understand the problem to be solved and be capable

of creating a quality design the conforms to the problem requirements

 Eliminating architectural flaws during design can improve quality

 Project management – project plan includes explicit techniques for quality and change

management

Page 35 of 77

 Quality control - series of inspections, reviews, and tests used to ensure conformance of a

work product to its specifications

 Quality assurance - consists of the auditing and reporting procedures used to provide

management with data needed to make proactive decisions

Review Techniques

Overview

People discover mistakes as they develop software engineering work products. Technical

reviews are the most effective technique for finding mistakes early in the software process. If

you find an error early in the process, it is less expensive to correct. In addition, errors have a

way of amplifying as the process proceeds. Reviews save time by reducing the amount of rework

that will be required late in the project. In general, six steps are employed: planning, preparation,

structuring the meeting, noting errors, making corrections, and verifying that corrections have

been performed properly. The output of a review is a list of issues and/or errors that have been

uncovered, as well as the technical status of the work product reviewed.

Review Goals

 Point out needed improvements in the product of a single person or team

 Confirm those parts of a product in which improvement is either not desired or not needed

 Achieve technical work of more uniform, or at least more predictable, quality than can be

achieved without reviews, in order to make technical work more manageable

Software Defect Cost Impact

 Defects or faults are quality problems discovered after software has been released to end-user

or another software process framework activity

 Industry studies suggest that design activities introduce 50-65% of all defects or errors during

the software process

 Review techniques have been shown to be up to 75% effective in uncovering design flaws

which ultimately reduces the cost of subsequent activities in the software process

 Defect amplification models can be used to show that the benefits of detecting and removing

defects from activities that occur early in the software process

Review Metrics

 Preparation effort, Ep - the effort (in person-hours) required to review a work product prior

to the actual review meeting

 Assessment effort, Ea - the effort (in person-hours) that is expending during the actual review

 Rework effort, Er - the effort (in person-hours) that is dedicated to the correction of those

errors uncovered during the review

 Work product size, WPS - a measure of the size of the work product that has been reviewed

(e.g., the number of UML models, or the number of document pages, or the number of lines

of code)

Page 36 of 77

 Minor errors found, Errminor - the number of errors found that can be categorized as minor

(requiring less than some pre-specified effort to correct)

 Major errors found, Errmajor - the number of errors found that can be categorized as major

(requiring more than some pre-specified effort to correct)

 Total review effort, Ereview = Ep + Ea + Er

 Total number of errors discovered, Errtot = Errminir + Errmajor

 Defect density = Errtot / WPS

Review Cost Effectiveness

 Software review organizations can only assess the effectiveness and cost benefits after

reviews are completed, review metrics collected, average data computed, and downstream

software quality is measured by testing

 Some people have found a 10 to 1 return on inspection costs, accelerated product delivery

times, and productivity increases

 Review costs benefits are most pronounced during the latter phases of software process

leading up to product deployment

Review Formality

 Review formality increases as:

o degree to which distinct roles are defined for the reviewers

o amount of planning and preparation for the review increases

o distinct structure for review (including tasks and internal work products) is defined

o follow-up the reviewers occurs for any corrections that are made

Informal Reviews

 Simple desk check of a work product or casual meeting

 Efficacy of informal reviews is improved by developing and using checklists for each major

work product to be reviewed

 Pair programming might be viewed as continuous as relying on continuous desk checks as

code is being created

Formal Technical Review (FTR) Objectives

 Uncover errors in function, logic, or implementation for any representation of the software

 Verify that the software under review meets its requirements

 Ensure that the software has been represented according to predefined standards

 Achieve software that is developed in a uniform manner

 Make projects more manageable

 Serve as a training ground, enabling junior engineers to observe different approaches to

software analysis, design, and implementation

 Serves to promote backup and continuity because a number of people become familiar with

parts of the software that they may not have otherwise seen

Page 37 of 77

Formal Technical Reviews

 Involves 3 to 5 people (including reviewers)

 Advance preparation (no more than 2 hours per person) required

 Duration of review meeting should be less than 2 hours

 Focus of review (walkthrough or inspection) is on a discrete work product

 Review leader organizes the review meeting at the producer's request

 Reviewers ask questions that enable the producer to discover his or her own error (the

product is under review not the producer)

 Producer of the work product walks the reviewers through the product

 Recorder writes down any significant issues raised during the review

 Reviewers decide to accept or reject the work product and whether to require additional

reviews of product or not

Review Summary Report

 What was reviewed?

 Who reviewed it?

 What were the findings and conclusions?

Review Issues List

 Identifies problem areas within product

 Serves as action list to guide the work product creator as corrections are made

Formal Technical Review Guidelines

1. Review the product not the producer.

2. Set an agenda and maintain it.

3. Limit rebuttal and debate.

4. Enunciate problem area, but don’t attempt to solve every problem noted.

5. Take written notes.

6. Limit number of participants and insist on advance preparation.

7. Develop a checklist for each product that is likely to be reviewed.

8. Allocate resources and schedule time for all reviewers.

9. Conduct meaningful training for all reviewers.

10. Review your early reviews,

Sample Driven Reviews

 Samples of all software engineering work products are reviewed to determine the most error-

prone

 Full FTR resources are focused on the likely error-prone work products based on sampling

results

 To be effective the sample driven review process must be driven by quantitative measures of

the work products

Page 38 of 77

1. Inspect a representative fraction of the content of each software work product (i) and

record the number of faults (fi) found within (ai)

2. Develop a gross estimate of the number of faults within work product i by multiplying fi

by 1/ai

3. Sort work products in descending order according to the gross estimate of the number of

faults in each

4. Focus on available review resources on those work products with the highest estimated

number of faults

Software Quality Assurance

Overview

This chapter provides an introduction to software quality assurance. Software quality assurance

(SQA) is the concern of every software engineer to reduce costs and improve product time-to-

market. A Software Quality Assurance Plan is not merely another name for a test plan, though

test plans are included in an SQA plan. SQA activities are performed on every software project.

Use of metrics is an important part of developing a strategy to improve the quality of both

software processes and work products.

Software Quality Assurance

 Umbrella activity applied throughout the software process

 Planned and systematic pattern of actions required to ensure high quality in software

 Responsibility of many stakeholders (software engineers, project managers, customers,

salespeople, SQA group)

SQA Questions

 Does the software adequately meet its quality factors?

 Has software development been conducted according to pre-established standards?

 Have technical disciplines performed their SQA roles properly?

Quality Assurance Elements

 Standards – ensure that standards are adopted and follwed

 Reviews and audits – audits are reviews performed by SQA personnel to ensure hat quality

guidelines are followed for all software engineering work

 Testing – ensure that testing id properly planned and conducted

 Error/defect collection and analysis – collects and analyses error and defect data to better

understand how errors are introduced and can be eliminated

 Changes management – ensures that adequate change management practices have been

instituted

 Education – takes lead in software process improvement and educational program

 Vendor management – suggests specific quality practices vendor should follow and

incorporates quality mandates in vendor contracts

 Security management – ensures use of appropriate process and technology to achieve desired

security level

Page 39 of 77

 Safety – responsible for assessing impact of software failure and initiating steps to reduce

risk

 Risk management – ensures risk management activities are properly conducted and that

contingency plans have been established

SQA Tasks

 Prepare SQA plan for the project.

 Participate in the development of the project's software process description.

 Review software engineering activities to verify compliance with the defined software

process.

 Audit designated software work products to verify compliance with those defined as part of

the software process.

 Ensure that any deviations in software or work products are documented and handled

according to a documented procedure.

 Record any evidence of noncompliance and reports them to management.

SQA Goals

 Requirements quality

o Ambiguity

o Completeness

o Volatility

o Traceability

o Model clarity

 Design quality

o Architectural integrity

o Component completeness

o Interface complexity

o Patterns

 Code quality

o Complexity

o Maintainability

o Understandability

o Reusability

o Documentation

 Quality control effectiveness

o Resource allocation

o Completion rate

o Review effectiveness

o Testing effectiveness

Formal SQA

 Assumes that a rigorous syntax and semantics can be defined for every programming

language

Page 40 of 77

 Allows the use of a rigorous approach to the specification of software requirements

 Applies mathematical proof of correctness techniques to demonstrate that a program

conforms to its specification

Statistical Quality Assurance

1. Information about software defects is collected and categorized

2. Each defect is traced back to its cause

3. Using the Pareto principle (80% of the defects can be traced to 20% of the causes) isolate the

"vital few" defect causes

4. Move to correct the problems that caused the defects in the “vital few”

Six Sigma Software Engineering

 Define customer requirements, deliverables, and project goals via well-defined methods of

customer communication.

 Measure each existing process and its output to determine current quality performance (e.g.

compute defect metrics)

 Analyze defect metrics and determine viral few causes.

 For an existing process that needs improvement

o Improve process by eliminating the root causes for defects

o Control future work to ensure that future work does not reintroduce causes of defects

 If new processes are being developed

o Design each new process to avoid root causes of defects and to meet customer

requirements

o Verify that the process model will avoid defects and meet customer requirements

Software Reliability

 Defined as the probability of failure free operation of a computer program in a specified

environment for a specified time period

 Can be measured directly and estimated using historical and developmental data (unlike

many other software quality factors)

 Software reliability problems can usually be traced back to errors in design or

implementation.

 Measures of Reliability

 Mean time between failure (MTBF) = MTTF + MTTR

 MTTF = mean time to failure

 MTTR = mean time to repair

 Availability = [MTTF / (MTTF + MTTR)] x 100%

Software Safety

 Defined as a software quality assurance activity that focuses on identifying potential hazards

that may cause a software system to fail.

 Early identification of software hazards allows developers to specify design features to can

eliminate or at least control the impact of potential hazards.

Page 41 of 77

 Software reliability involves determining the likelihood that a failure will occur, while

software safety examines the ways in which failures may result in conditions that can lead to

a mishap.

ISO 9000 Quality Standards

 Quality assurance systems are defined as the organizational structure, responsibilities,

procedures, processes, and resources for implementing quality management.

 ISO 9000 describes the quality elements that must be present for a quality assurance system

to be compliant with the standard, but it does not describe how an organization should

implement these elements.

 ISO 9001:2000 is the quality standard that contains 20 requirements that must be present in

an effective software quality assurance system.

SQA Plan

 Management section - describes the place of SQA in the structure of the organization

 Documentation section - describes each work product produced as part of the software

process

 Standards, practices, and conventions section - lists all applicable standards/practices applied

during the software process and any metrics to be collected as part of the software

engineering work

 Reviews and audits section - provides an overview of the approach used in the reviews and

audits to be conducted during the project

 Test section - references the test plan and procedure document and defines test record

keeping requirements

 Problem reporting and corrective action section - defines procedures for reporting, tracking,

and resolving errors or defects, identifies organizational responsibilities for these activities

 Other - tools, SQA methods, change control, record keeping, training, and risk management

Software Testing Strategies

Overview

This chapter describes several approaches to testing software. Software testing must be planned

carefully to avoid wasting development time and resources. Testing begins “in the small” and

progresses “to the large”. Initially individual components are tested and debugged. After the

individual components have been tested and added to the system, integration testing takes place.

Once the full software product is completed, system testing is performed. The Test Specification

document should be reviewed like all other software engineering work products.

Strategic Approach to Software Testing

 Many software errors are eliminated before testing begins by conducting effective technical

reviews

 Testing begins at the component level and works outward toward the integration of the entire

computer-based system.

 Different testing techniques are appropriate at different points in time.

Page 42 of 77

 The developer of the software conducts testing and may be assisted by independent test

groups for large projects.

 Testing and debugging are different activities.

 Debugging must be accommodated in any testing strategy.

Verification and Validation

 Make a distinction between verification (are we building the product right?) and validation

(are we building the right product?)

 Software testing is only one element of Software Quality Assurance (SQA)

 Quality must be built in to the development process, you can’t use testing to add quality after

the fact

Organizing for Software Testing

 The role of the Independent Test Group (ITG) is to remove the conflict of interest inherent

when the builder is testing his or her own product.

 Misconceptions regarding the use of independent testing teams

o The developer should do no testing at all

o Software is tossed “over the wall” to people to test it mercilessly

o Testers are not involved with the project until it is time for it to be tested

 The developer and ITGC must work together throughout the software project to ensure that

thorough tests will be conducted

Software Testing Strategy

 Unit Testing – makes heavy use of testing techniques that exercise specific control paths to

detect errors in each software component individually

 Integration Testing – focuses on issues associated with verification and program construction

as components begin interacting with one another

 Validation Testing – provides assurance that the software validation criteria (established

during requirements analysis) meets all functional, behavioral, and performance requirements

 System Testing – verifies that all system elements mesh properly and that overall system

function and performance has been achieved

Strategic Testing Issues

 Specify product requirements in a quantifiable manner before testing starts.

 Specify testing objectives explicitly.

 Identify categories of users for the software and develop a profile for each.

 Develop a test plan that emphasizes rapid cycle testing.

 Build robust software that is designed to test itself.

 Use effective formal reviews as a filter prior to testing.

 Conduct formal technical reviews to assess the test strategy and test cases.

 Develop a continuous improvement approach for the testing process.

Page 43 of 77

Unit Testing

 Module interfaces are tested for proper information flow.

 Local data are examined to ensure that integrity is maintained.

 Boundary conditions are tested.

 Basis (independent) path are tested.

 All error handling paths should be tested.

 Drivers and/or stubs need to be developed to test incomplete software.

Integration Testing

 Sandwich testing uses top-down tests for upper levels of program structure coupled with

bottom-up tests for subordinate levels

 Testers should strive to indentify critical modules having the following requirements

 Overall plan for integration of software and the specific tests are documented in a test

specification

Integration Testing Strategies

 Top-down integration testing

1. Main control module used as a test driver and stubs are substitutes for components

directly subordinate to it.

2. Subordinate stubs are replaced one at a time with real components (following the depth-

first or breadth-first approach).

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests and other stub is replaced with a real component.

5. Regression testing may be used to ensure that new errors not introduced.

 Bottom-up integration testing

1. Low level components are combined into clusters that perform a specific software

function.

2. A driver (control program) is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

 Regression testing – used to check for defects propagated to other modules by changes made

to existing program

1. Representative sample of existing test cases is used to exercise all software functions.

2. Additional test cases focusing software functions likely to be affected by the change.

3. Tests cases that focus on the changed software components.

 Smoke testing

1. Software components already translated into code are integrated into a build.

2. A series of tests designed to expose errors that will keep the build from performing its

functions are created.

3. The build is integrated with the other builds and the entire product is smoke tested daily

(either top-down or bottom integration may be used).

Page 44 of 77

General Software Test Criteria

 Interface integrity – internal and external module interfaces are tested as each module or

cluster is added to the software

 Functional validity – test to uncover functional defects in the software

 Information content – test for errors in local or global data structures

 Performance – verify specified performance bounds are tested

Object-Oriented Test Strategies

 Unit Testing – components being tested are classes not modules

 Integration Testing – as classes are integrated into the architecture regression tests are run to

uncover communication and collaboration errors between objects

 Systems Testing – the system as a whole is tested to uncover requirement errors

Object-Oriented Unit Testing

 smallest testable unit is the encapsulated class or object

 similar to system testing of conventional software

 do not test operations in isolation from one another

 driven by class operations and state behavior, not algorithmic detail and data flow across

module interface

Object-Oriented Integration Testing

 focuses on groups of classes that collaborate or communicate in some manner

 integration of operations one at a time into classes is often meaningless

 thread-based testing – testing all classes required to respond to one system input or event

 use-based testing – begins by testing independent classes (classes that use very few server

classes) first and the dependent classes that make use of them

 cluster testing – groups of collaborating classes are tested for interaction errors

 regression testing is important as each thread, cluster, or subsystem is added to the system

WebApp Testing Strategies

1. WebApp content model is reviewed to uncover errors.

2. Interface model is reviewed to ensure all use-cases are accommodated.

3. Design model for WebApp is reviewed to uncover navigation errors.

4. User interface is tested to uncover presentation errors and/or navigation mechanics problems.

5. Selected functional components are unit tested.

6. Navigation throughout the architecture is tested.

7. WebApp is implemented in a variety of different environmental configurations and the

compatibility of WebApp with each is assessed.

8. Security tests are conducted.

9. Performance tests are conducted.

10. WebApp is tested by a controlled and monitored group of end-users (looking for content

errors, navigation errors, usability concerns, compatibility issues, reliability, and

performance).

Page 45 of 77

Validation Testing

 Focuses on visible user actions and user recognizable outputs from the system

 Validation tests are based on the use-case scenarios, the behavior model, and the event flow

diagram created in the analysis model

o Must ensure that each function or performance characteristic conforms to its

specification.

o Deviations (deficiencies) must be negotiated with the customer to establish a means for

resolving the errors.

 Configuration review or audit is used to ensure that all elements of the software configuration

have been properly developed, cataloged, and documented to allow its support during its

maintenance phase.

Acceptance Testing

 Making sure the software works correctly for intended user in his or her normal work

environment.

 Alpha test – version of the complete software is tested by customer under the supervision of

the developer at the developer’s site

 Beta test – version of the complete software is tested by customer at his or her own site

without the developer being present

System Testing

 Series of tests whose purpose is to exercise a computer-based system

 The focus of these system tests cases identify interfacing errors

 Recovery testing – checks the system’s ability to recover from failures

 Security testing – verifies that system protection mechanism prevent improper penetration or

data alteration

 Stress testing – program is checked to see how well it deals with abnormal resource demands

(i.e. quantity, frequency, or volume)

 Performance testing – designed to test the run-time performance of software, especially real-

time software

 Deployment (or configuration) testing – exercises the software in each of the environment in

which it is to operate

Bug Causes

 The symptom and the cause may be geographically remote (symptom may appear in one part

of a program).

 The symptom may disappear (temporarily) when another error is corrected.

 The symptom may actually be caused by non-errors (e.g., round-off inaccuracies).

 The symptom may be caused by human error that is not easily traced.

 The symptom may be a result of timing problems, rather than processing problems.

 It may be difficult to accurately reproduce input conditions (e.g., a real-time application in

which input ordering is indeterminate).

Page 46 of 77

 The symptom may be intermittent. This is particularly common in embedded systems that

couple hardware and software inextricably.

 The symptom may be due to causes that are distributed across a number of tasks running on

different processors.

Debugging Strategies

 Debugging (removal of a defect) occurs as a consequence of successful testing.

 Some people are better at debugging than others.

 Common approaches (may be partially automated with debugging tools):

 Brute force – memory dumps and run-time traces are examined for clues to error causes

 Backtracking – source code is examined by looking backwards from symptom to

potential causes of errors

 Cause elimination – uses binary partitioning to reduce the number of locations potential

where errors can exist)

Bug Removal Considerations

 Is the cause of the bug reproduced in another part of the program?

 What “next bug” might be introduced by the fix that is being proposed?

 What could have been done to prevent this bug in the first place?

Testing Conventional Applications

Overview

The importance of software testing to software quality can not be overemphasized. Once source

code has been generated, software must be tested to allow errors to be identified and removed

before delivery to the customer. While it is not possible to remove every error in a large software

package, the software engineer’s goal is to remove as many as possible early in the software

development cycle. It is important to remember that testing can only find errors it cannot prove

that a program is free of bugs. Two basic test techniques exist for testing coventional software,

testing module input/output (black-box) and exercising the internal logic of software components

(white-box). Formal technical reviews by themselves cannot find all software defects, test data

must also be used. For large software projects, separate test teams may be used to develop and

execute the set of test cases used in testing. Testing must be planned and designed.

Software Testing Objectives

 Testing is the process of executing a program with the intent of finding errors.

 A good test case is one with a high probability of finding an as-yet undiscovered error.

 A successful test is one that discovers an as-yet-undiscovered error.

Software Testability Checklist

 Operability – the better it works the more efficiently it can be tested

 Observabilty – what you see is what you test

Page 47 of 77

 Controllability – the better software can be controlled the more testing can be automated and

optimized

 Decomposability – by controlling the scope of testing, the more quickly problems can be

isolated and retested intelligently

 Simplicity – the less there is to test, the more quickly we can test

 Stability – the fewer the changes, the fewer the disruptions to testing

 Understandability – the more information known, the smarter the testing

Good Test Attributes

 A good test has a high probability of finding an error.

 A good test is not redundant.

 A good test should be best of breed.

 A good test should not be too simple or too complex.

Test Case Design Strategies

 Black-box or behavioral testing – knowing the specified function a product is to perform and

demonstrating correct operation based solely on its specification without regard for its

internal logic

 White-box or glass-box testing – knowing the internal workings of a product, tests are

performed to check the workings of all possible logic paths

White-Box Testing Questions

 Can you guarantee that all independent paths within a module will be executed at least once?

 Can you exercise all logical decisions on their true and false branches?

 Will all loops execute at their boundaries and within their operational bounds?

 Can you exercise internal data structures to ensure their validity?

Basis Path Testing

 White-box technique usually based on the program flow graph

 The cyclomatic complexity of the program computed from its flow graph using the formula

V(G) = E – N + 2 or by counting the conditional statements in the program design language

(PDL) representation and adding 1

 Determine the basis set of linearly independent paths (the cardinality of this set id the

program cyclomatic complexity)

 Prepare test cases that will force the execution of each path in the basis set.

Control Structure Testing

 White-box technique focusing on control structures present in the software

 Condition testing (e.g. branch testing) – focuses on testing each decision statement in a

software module, it is important to ensure coverage of all logical combinations of data that

may be processed by the module (a truth table may be helpful)

 Data flow testing – selects test paths based according to the locations of variable definitions

and uses in the program (e.g. definition use chains)

Page 48 of 77

 Loop testing – focuses on the validity of the program loop constructs (i.e. simple loops,

concatenated loops, nested loops, unstructured loops), involves checking to ensure loops start

and stop when they are supposed to (unstructured loops should be redesigned whenever

possible)

Black-Box Testing Questions

 How is functional validity tested?

 How is system behavior and performance tested?

 What classes of input will make good test cases?

 Is the system particularly sensitive to certain input values?

 How are the boundaries of a data class isolated?

 What data rates and data volume can the system tolerate?

 What effect will specific combinations of data have on system operation?

Graph-based Testing Methods

 Black-box methods based on the nature of the relationships (links) among the program

objects (nodes), test cases are designed to traverse the entire graph

 Transaction flow testing – nodes represent steps in some transaction and links represent

logical connections between steps that need to be validated

 Finite state modeling – nodes represent user observable states of the software and links

represent transitions between states

 Data flow modeling – nodes are data objects and links are transformations from one data

object to another

 Timing modeling – nodes are program objects and links are sequential connections between

these objects, link weights are required execution times

Equivalence Partitioning

 Black-box technique that divides the input domain into classes of data from which test cases

can be derived

 An ideal test case uncovers a class of errors that might require many arbitrary test cases to be

executed before a general error is observed

 Equivalence class guidelines:

1. If input condition specifies a range, one valid and two invalid equivalence classes are

defined

2. If an input condition requires a specific value, one valid and two invalid equivalence

classes are defined

3. If an input condition specifies a member of a set, one valid and one invalid equivalence

class is defined

4. If an input condition is Boolean, one valid and one invalid equivalence class is defined

Boundary Value Analysis

 Black-box technique that focuses on the boundaries of the input domain rather than its center

Page 49 of 77

 BVA guidelines:

1. If input condition specifies a range bounded by values a and b, test cases should include a

and b, values just above and just below a and b

2. If an input condition specifies and number of values, test cases should be exercise the

minimum and maximum numbers, as well as values just above and just below the

minimum and maximum values

3. Apply guidelines 1 and 2 to output conditions, test cases should be designed to produce

the minimum and maxim output reports

4. If internal program data structures have boundaries (e.g. size limitations), be certain to

test the boundaries

Orthogonal Array Testing

 Black-box technique that enables the design of a reasonably small set of test cases that

provide maximum test coverage

 Focus is on categories of faulty logic likely to be present in the software component (without

examining the code)

 Priorities for assessing tests using an orthogonal array

1. Detect and isolate all single mode faults

2. Detect all double mode faults

3. Mutimode faults

Model-Based Testing

 Black-bix testing technique using information contained in the requirements model as a basis

for test case generation

 Steps for MBT

1. Analyze an existing behavior model for the software or create one.

2. Traverse behavioral model and specify inputs that force software to make transition from

state to state.

3. Review behavioral model and note expected outputs as software makes transition from

state to state.

4. Execute test cases.

5. Compare actual and expected results (take corrective action as required).

Specialized Testing

 Graphical User Interface (GUI) – test cases can be developed from behavioral model of user

interface, use of automated testing tools is strongly recommended.

 Client/Sever Architectures – operational profiles derived from usage scenarios are tested at

three levels (client application “disconnected mode”, client and server software without

network, complete application)

 Applications function tests

 Server tests

 Database tests

 Transaction tests

 Network communications tests

 Documentation and Help

Page 50 of 77

 Review and inspection to check for editorial errors

 Black-Box for live tests

o Graph-based testing to describe program use

o Equivalence partitioning and boundary value analysis to describe classes of input and

interactions

 Real-Time Systems

1. Task testing – test each task independently

2. Behavioral testing – using technique similar to equivalence partitioning of external event

models created by automated tools

3. Intertask testing – testing for timing errors (e.g. synchronization and communication

errors)

4. System testing – testing full system, especially the handling of Boolean events

(interrupts), test cased based on state model and control specification

Testing Patterns

 Provide software engineers with useful advice as testing activities begin

 Provide a vocabulary for problem-solvers

 Can focus attention on forces behind a problem (when and why a solution applies)

 Encourage iterative thinking (each solution creates a new context in which problems can be

solved

Testing Object-Oriented Applications

Overview

It is important to test object-oriented at several different levels to uncover errors that may occur

as classes collaborate with one another and with other subsystems. The process of testing object-

oriented systems begins with a review of the object-oriented analysis and design models. Once

the code is written object-oriented testing begins by testing "in the small" with class testing

(class operations and collaborations). As classes are integrated to become subsystems class

collaboration problems are investigated using thread-based testing, use-based testing, cluster

testing, and fault-based approaches. Use-cases from the analysis model are used to uncover

software validation errors. The primary work product is a set of documented test cases with

defined expected results and the actual results recorded.

OO Testing

 Requires definition of testing to be broadened to include error discovery techniques applied

to object-oriented analysis (OOA) and deign (OOD) models

 Significant strategy changes need to be made to unit and integration testing

 Test case design must take into account the unique characteristic of object-oriented (OO)

software

 All object-oriented models should be reviewed for correctness, completeness, and

consistency as part of the testing process

OOA and OOD Model Review

 The analysis and design models cannot be tested because they are not executable

Page 51 of 77

 The syntax correctness of the analysis and design models can check for proper use of

notation and modeling conventions

 The semantic correctness of the analysis and design models are assessed based on their

conformance to the real world problem domain (as determined by domain experts)

OO Model Consistency

 Judged by considering relationships among object-oriented model entities

 The analysis model can be used to facilitate the steps below for each iteration of the

requirements model

1. Revisit the CRC model and object-relationship model

2. Inspect the description of each CRC card to determine if a delegated responsibility is part

of the collaborator’s definition

3. Invert the connection to be sure that each collaborator that is asked for service is

receiving requests from a reasonable source.

4. Using the inverted connections from step 3, determine whether additional classes might

be required or whether responsibilities are properly grouped among the classes.

5. Determine whether widely requested responsibilities might be combined into a single

responsibility.

 Once the deign model is created you should conduct reviews of the system design and object

design

 The system design is reviewed by examining the object-behavior model and mapping the

required system behavior against subsystems designed to accomplish the behavior

Software Testing Strategy for Object-Oriented Architectures

 Unit Testing – called class testing in OO circles, components being tested are classes and

their behaviors not modules

 Integration Testing – as classes are integrated into the architecture regression tests are run to

uncover communication and collaboration errors between objects

o Thread-based testing – tests one thread at a time (set of classes required to respond to one

input or event)

o Use-based testing – tests independent classes (those that use very through server classes)

first then tests dependent classes (those that use independent classes) until entire system

is tested

o Cluster testing – set of collaborating classes (identified from CRC card model) is

exercised using test cases designed to uncover collaboration errors

 Validation Testing – testing strategy where the system as a whole is tested to uncover

requirement errors, uses conventional black box testing methods

Comparison Testing

 Black-box testing for safety critical systems in which independently developed

implementations of redundant systems are tested for conformance to specifications

 Often equivalence class partitioning is used to develop a common set of test cases for each

implementation

OO Test Case Design

1. Each test case should be uniquely identified and be explicitly associated with a class to be

tested

2. State the purpose of each test

Page 52 of 77

3. List the testing steps for each test including:

a. list of states to test for each object involved in the test

b. list of messages and operations to exercised as a consequence of the test

c. list of exceptions that may occur as the object is tested

d. list of external conditions needed to be changed for the test

e. supplementary information required to understand or implement the test

OO Test Case Design

 White-box testing methods can be applied to testing the code used to implement class

operations, but not much else

 Black-box testing methods are appropriate for testing OO systems just as they are for testing

conventional systems

OO Fault-Based Testing

 Best reserved for operations and the class level

 Uses the inheritance structure

 Tester examines the OOA model and hypothesizes a set of plausible defects that may be

encountered in operation calls and message connections and builds appropriate test cases

 Misses incorrect specification and errors in subsystem interactions

 Finds client errors not server errors

Class Hierarchy and Test Cases

 Subclasses may contain operations that are inherited from super classes

 Subclasses may contain operations that were redefined rather than inherited

 All classes derived from a previously tested base class need to be tested thoroughly

OO Scenario-Based Testing

 Using the user tasks described in the use-cases and building the test cases from the tasks and

their variants

 Uncovers errors that occur when any actor interacts with the OO software

 Concentrates on what the user does, not what the product does

 You can get a higher return on your effort by spending more time on reviewing the use-cases

as they are created, than spending more time on use-case testing

OO Testing – Surface Structure and Deep Structure

 Testing surface structure – exercising the structure observable by end-user, this often

involves observing and interviewing users as they manipulate system objects

 Testing deep structure – exercising internal program structure - the dependencies, behaviors,

and communications mechanisms established as part of the system and object design

Class Level Testing Methods

 Random testing – requires large numbers data permutations and combinations and can be

inefficient

 Partition testing – reduces the number of test cases required to test a class

o State-based partitioning – tests designed in way so that operations that cause state

changes are tested separately from those that do not

Page 53 of 77

o Attribute-based partitioning – for each class attribute, operations are classified

according to those that use the attribute, those that modify the attribute, and those that do

not use or modify the attribute

o Category-based partitioning – operations are categorized according to the function they

perform: initialization, computation, query, termination

Inter-Class Test Case Design

 Multiple class testing

1. For each client class use the list of class operators to generate random test sequences that

send messages to other server classes

2. For each message generated determine the collaborator class and the corresponding

server object operator

3. For each server class operator (invoked by a client object message) determine the

message it transmits

4. For each message, determine the next level of operators that are invoked and incorporate

them into the test sequence

 Tests derived from behavior models

o Test cases must cover all states in the state transition diagram

o Breadth first traversal of the state model can be used (test one transition at a time and

only make use of previously tested transitions when testing a new transition)

o Test cases can also be derived to ensure that all behaviors for the class have been

adequately exercised

Testing Web Applications

Overview

This chapter describes Web testing as a collection of activities whose purpose is to uncover

errors in WebApp content, function, usability, navigability, performance, capacity, and security.

A testing startegy that involves both reviews and executable testing is applied throughout the

WebE process. The WebApp testing process involves all project stakeholders. Web testing

begins with user-visible aspects of WebApps and proceeds to exercise technology and

infrastructure. Seven testing steps are performed: content testing, interface testing, navigation

testing, component testing, configuration testing, performance testing, and security testing. In

sometimes a test plan is written. A suite of test cases is always developed for every testing step

and an archive of testing results is maintained for future use.

Dimensions of Quality

 Content evaluated at both syntactic and semantic levels

 Function tested to uncover lack of conformance to requirements

 Structure is assessed to ensure proper content and function are delivered

 Usability is tested to ensure that each category of user can be supported as new content or

functionality is added

 Navigability is tested to ensure that all navigation syntax and semantics are exercised

 Performance is tested under a variety of operating conditions, configurations, and loading to

ensure a reasonable level of user response

 Compatibility tested by executing WebApp using a variety of client and server configurations

 Interoperability tested to ensure proper interfaces to other applications and databases

 Security is tested by assessing potential vulnerabilities and trying to exploit each of them

Page 54 of 77

Characteristics of WebApp Errors

 Many types of WebApp tests uncover problems evidenced on the client side using an specific

interface (e.g. may be an error symptom, not the error itself)

 It may be difficult to reproduce errors outside of the environment in which the error was

originally encountered

 Many errors can be traced to the WebApp configuration, incorrect design, or improper

HTML

 It is hard to determine whether errors are caused by problems with the server, the client, or

the network itself

 Some errors are attributable to problems in the static operating environment and some are

attributable to the dynamic operating environment

Testing WebApps for Errors

11. WebApp content model is reviewed to uncover errors.

12. Interface model is reviewed to ensure all use-cases are accommodated.

13. Design model for WebApp is reviewed to uncover navigation errors.

14. User interface is tested to uncover presentation errors and/or navigation mechanics problems.

15. Selected functional components are unit tested.

16. Navigation throughout the architecture is tested.

17. WebApp is implemented in a variety of different environmental configurations and the

compatibility of WebApp with each is assessed.

18. Security tests are conducted.

19. Performance tests are conducted.

20. WebApp is tested by a controlled and monitored group of end-users (looking for content

errors, navigation errors, usability concerns, compatibility issues, reliability, and

performance).

Web Engineering Test Plan Elements

1. Task set to be applied during testing

2. Work products to be produced as each testing task is executed

3. Evaluation and recording methods for testing results

Web Testing Process

 Content testing – tries to uncover content errors

 Interface testing – exercises interaction mechanisms and validates aesthetic aspects of user

interface

 Navigation testing – makes use of use-cases in the design of test cases that exercise each

usage scenario against the navigation design (used as part of WebApp integration testing)

 Component testing – exercises the WebApp content and functional units (used as part of

WebApp integration testing)

 Configuration testing – attempts to uncover errors traceable to a specific client or server

environment (cross-reference table is useful)

Page 55 of 77

 Security testing – tests designed to exploit WebApp or environment vulnerabilities

 Performance testing – series of tests designed to assess:

o WebApp response time and reliability under varying system loads

o Which WebApp components are responsible for system degradation

o How performance degradation impacts overall WebApp requirements

Content Testing Objectives

 Uncover syntactic errors in all media (e.g. typos)

 Uncover semantic errors (e.g. errors in completeness or accuracy)

 Find errors in organization or structure of content presented to end-user

 Questions to be answered

o Is the information factually accurate?

o Is the information concise and to the point?

o Is the layout of the content object easy for the user to understand?

o Can information embedded within a content object be found easily?

o Have proper references been provided for all information derived from other sources?

o Is the information presented consistent internally and consistent with information

presented in other content objects?

o Is the content offensive, misleading, or does it open the door to litigation?

o Does the content infringe on existing copyrights or trademarks?

o Does the content contain internal links that supplement existing content? Are the links

correct?

o Does the aesthetic style of the content conflict with the aesthetic style of the interface?

Database Testing Problems

 The original query must be checked to uncover errors in translating the user’s request to SQL

 Problems in communicating between the WebApp server and Database server need to be

tested.

 Need to demonstrate the validity of the raw data from the database to the WebApp and the

validity of the transformations applied to the raw data.

 Need to test validity of dynamic content object formats transmitted to the user and the

validity of the transformations to make the data visible to the user.

User Interface Testing

 During requirements testing the interface model reviewed to ensure it corresponds to

stakeholder requirements and the requirements model

 During design interface model is reviewed to ensure generic user interface quality criteria

have been achieved and that application-specific issues have been properly addressed

 During testing focus shifts to application-specific aspects of user intyeraction as manifested

the user interface syntax and semantics

User Interface Testing Strategy

 Interface features are tested to ensure that design rules, aesthetics, and related visual content

Page 56 of 77

is available for user without error.

 Individual interface mechanisms are tested using unit testing strategies.

 Each interface mechanism is tested in the context of a use-case of navigation semantic unit

(e.g. thread) for a specific user category

 Complete interface is tested against selected use-cases and navigation semantic unit to

uncover interface semantic errors

 Interface is tested in a variety of environments to ensure compatibility

Testable WebApp Interface Mechanisms

 Links (each link is listed and tested)

 Forms (check labels, field navigation, data entry, error checking, data transmission,

meaningful error messages)

 Client-side scripting (black box testing and compatibility tests)

 Dynamic HTML (correctness of generated HTML and compatibility tests)

 Client-side pop-up windows (proper size and placement of pop-up, working controls,

consistent with aesthetic appearance of Web page)

 CGI scripts (black box, data integrity, and performance testing)

 Streaming content (demonstrate existence, accuracy, and control over content display)

 Cookies (check that server constructs cookie correctly, cookie transmitted correctly, ensure

proper level of persistence, check to see WebApp attaches the correct cookies to server

requests)

 Application specific interface mechanisms

Usability Testing

 Define set of usability testing categories and identify goals for each

o Interactivity – interaction mechanisms are easy to understand and use

o Layout – navigation, content, and functions allows user to find them quickly

o Readability – content understandable

o Aesthetics – graphic design supports easy of use

o Display characteristics – WebApp makes good use of screen size and resolution

o Time sensitivity – content and features can be acquired in timely manner

o Personalization – adaptive interfaces

o Accessibility – special needs users

 Design tests the will enable each goal to be evaluated

 Select participants to conduct the tests

 Instrument participants’ interactions with the WebApp during testing

 Develop method for assessing usability of the WebApp

Compatibility Testing

 Define a set of commonly encountered client-side computing configurations and their

variants

 Organize this information (computing platform, typical display devices, operating system,

available browsers, connection speeds) in a tree structure

 Derive compatibility validation test suite from existing interface tests, navigation tests,

performance tests, and security tests

Page 57 of 77

 Goal is to uncover execution problems that can be traced to configuration differences

Component-Level (Function) Testing

 Black box and white box testing of each WebApp function

 Useful test case design methods

 Equivalence partitioning

 Boundary value analysis (esp. form field values)

 Path testing

 Forced error testing

Navigation Testing

 Need to ensure that all mechanisms that allow the WebApp to user to travel through the

WebApp are functional

 Need to validate that each navigation semantic unit (NSU) can be achieved by the

appropriate user category

Testing Navigation Syntax

 Navigational Links

 Redirects

 Bookmarks

 Frames and framesets

 Site maps

 Internal search engines

Testing Navigation Semantics

 Navigation semantic units are defined by a set of pathways that connect navigation nodes

 Each NSU must allows a user from a defined user category achieve specific requirements

defined by a use-case

 Testing needs to ensure that each path is executed in its entity without error

 Every relevant path must be tested

 User must be given guidance to follow or discontinue each path based on current location in

site map

Configuration Testing

 Server-side Issues

 Compatibility of WebApp with server OS

 Correct file and directory creation by WebApp

 System security measures do not degrade user service by WebApp

 Testing WebApp with distributed server configuration

 WebApp properly integrated with database software

 Correct execution of WebApp scripts

 Examination system administration errors for impact on WebApp

 On-site testing of proxy servers

 Client-side issues

Page 58 of 77

 Hardware

 Operating systems

 Browser software

 User interface components

 Plug-ins

 Connectivity

Testable Security Elements

 Firewalls

 Authentication

 Encryption

 Authorization

Performance Testing

 Used to performance problems that can result from lack of server-side resources,

inappropriate network bandwidth, inadequate database capabilities, faulty operating system

capabilities, poorly designed WebApp functionality, and hardware/software issues

 Intent is to discover how system responds to loading and collect metrics that will lead to

improve performance

o Does the server response time degrade to a point where it is noticeable and unacceptable?

o At what point (in terms of users, transactions or data loading) does performance become

unacceptable?

o What system components are responsible for performance degradation?

o What is the average response time for users under a variety of loading conditions?

o Does performance degradation have an impact on system security?

o Is WebApp reliability or accuracy affected as the load on the system grows?

o What happens when loads that are greater than maximum server capacity are applied?

o Does performance degradation have an impact on company revenues?

Performance – Load Testing

 Examines real-world conditions at variety of load level and in a variety of combinations

 Determine combinations of N, T, and D that cause performance to degrade or fail completely

N = number of concurrent users

T = number of on-line transactions per unit of time

D = data load processed by server per transaction

 Overall through put is computed using the equation

P = N * T * D

Performance – Stress Testing

 Forces loading to be increases to breaking point to determine how much capacity the

WebApp can handle

o Does system degrade gracefully?

o Are users made aware that they cannot reach the server?

Page 59 of 77

o Does server queue resource requests during heavy demand and then process the queue

when demand lessens?

o Are transactions lost as capacity is exceeded?

o Is data integrity affected when capacity is exceeded?

o How long till system comes back on-line after a failure?

o Are certain WebApp functions discontinued as capacity is reached?

Product Metrics for Software

Overview

This chapter describes the use of product metrics in the software quality assurance process.

Software engineers use product metrics to help them assess the quality of the design and

construction the software product being built. Product metrics provide software engineers with a

basis to conduct analysis, design, coding, and testing more objectively. Qualitative criteria for

assessing software quality are not always sufficient by themselves. The process of using product

metrics begins by deriving the software measures and metrics that are appropriate for the

software representation under consideration. Then data are collected and metrics are computed.

The metrics are computed and compared to pre-established guidelines and historical data. The

results of these comparisons are used to guide modifications made to work products arising from

analysis, design, coding, or testing.

Definitions

 Measure – provides a quantitative indication of the extent, amount, capacity, or size of some

attribute of a product or process

 Measurement – act of determining a measure

 Metric – statistic that relates individual measures to one another

 Indicator – metric or combination of metrics that provide insight into the software process,

software project, or the product itself to make things better

Benefits of Product Metrics

1. Assist in the evaluation of the analysis and evaluation model

2. Provide indication of procedural design complexity and source code complexity

3. Facilitate design of more effective testing

Measurement Process Activities

 Formulation – derivation of software measures and metrics appropriate for software

representation being considered

 Collection – mechanism used to accumulate the date used to derive the software metrics

 Analysis – computation of metrics

 Interpretation – evaluation of metrics that results in gaining insight into quality of the work

product

 Feedback – recommendations derived from interpretation of the metrics is transmitted to the

software development team

Page 60 of 77

Metrics Characterization and Validation Principles

 A metric should have desirable mathematical properties

 The value of a metric should increase when positive software traits occur or decrease when

undesirable software traits are encountered

 Each metric should be validated empirically in several contexts before it is used to make

decisions

Measurement Collection and Analysis Principles

1. Automate data collection and analysis whenever possible

2. Use valid statistical techniques to establish relationships between internal product attributes

and external quality characteristics

3. Establish interpretive guidelines and recommendations for each metric

Goal-Oriented Software Measurement (GQM)

 A goal definition template can be used to define each measurement goal

 GQM emphasizes the need

1. establish explicit measurement goal specific to the process activity or product

characteristic being assessed

2. define a set of questions that must be answered in order to achieve the goal

3. identify well-formulated metrics that help to answer these questions

Attributes of Effective Software Metrics

 Simple and computable

 Empirically and intuitively persuasive

 Consistent and objective

 Consistent in use of units and measures

 Programming language independent

 Provide an effective mechanism for quality feedback

Requirements Model Metrics

 Function-based metrics

o Function points

 Specification quality metrics (Davis)\

o Specificity

o Completeness

Architectural Design Metrics

 Structural complexity (based on module fanout)

 Data complexity (based on module interface inputs and outputs)

 System complexity (sum of structural and data complexity)

Page 61 of 77

 Morphology (number of nodes and arcs in program graph)

 Design structure quality index (DSQI)

OO Design Metrics

 Size(population, volume, length, functionality)

 Complexity (how classes interrelate to one another)

 Coupling (physical connections between design elements)

 Sufficiency (how well design components reflect all properties of the problem domain)

 Completeness (coverage of all parts of problem domain)

 Cohesion (manner in which all operations work together)

 Primitiveness (degree to which attributes and operations are atomic)

 Similarity (degree to which two or more classes are alike)

 Volatility (likelihood a design component will change)

Class-Oriented Metrics

 Chidamber and Kemerer (CK) Metrics Suite

o weighted metrics per class (WMC)

o depth of inheritance tree (DIT)

o number of children (NOC)

o coupling between object classes (CBO)

o response for a class(RFC)

o lack of cohesion in methods (LCOM)

 Harrison, Counsel, and Nithi (MOOD) Metrics Suite

o method inheritance factor (MIF)

o coupling factor (CF)

o polymorphism factor (PF)

 Lorenz and Kidd

o class size (CS)

o number of operations overridden by a subclass (NOO)

o number of operations added by a subclass (NOA)

o specialization index (SI)

Component-Level Design Metrics

 Cohesion metrics (data slice, data tokens, glue tokens, superglue tokens, stickiness)

 Coupling metrics (data and control flow, global, environmental)

 Complexity metrics (e.g. cyclomatic complexity)

Operation-Oriented Metrics

 Average operation size (OSavg)

 Operation complexity (OC)

 Average number of parameters per operation (NPavg)

Using WebApp Design Metrics

Page 62 of 77

 Is the WebApp interface usable?

 Are the aesthetics of the WebApp pleasing to the user and appropriate for the information

domain?

 Is the content designed to impart the most information for the least amount of effort?

 Is navigation efficient and straightforward?

 Has the WebApp architecture been designed to accommodate special goals and objectives of

users, content structure, functionality, and effective navigation flow?

 Are the WebApp components designed to reduce procedural complexity and enhance

correctness, reliability, and performance?

WebApp Interface Metrics

 Layout appropriateness

 Layout complexity

 Layout region complexity

 Recognition complexity

 Recognition time

 Typing effort

 Mouse pick effort

 Selection complexity

 Content acquisition time

Aesthetic (graphic layout) metrics

 Word count

 Body text percentage

 Emphasized body text %

 Text positioning count

 Text cluster count

 Link count

 Page size

 Graphic percentage

 Graphics count

 Color count

 Font count

Content Metrics

 Page wait

 Page complexity

 Graphic complexity

 Audio complexity

 Video complexity

 Animation complexity

 Scanned image complexity

Page 63 of 77

Navigation Metrics

 Page link complexity

 Connectivity

 Connectivity density

Halstead’s Software Science (Source Code Metrics)

 Overall program length

 Potential minimum algorithm volume

 Actual algorithm volume (number of bits used to specify program)

 Program level (software complexity)

 Language level (constant for given language)

Testing Metrics

 Metrics that predict the likely number of tests required during various testing phases

o Architectural design metrics

o Cyclomatic complexity can target modules that are candidates for extensive unit testing

o Halstead effort

 Metrics that focus on test coverage for a given component

o Cyclomatic complexity lies at the core of basis path testing

Object-Oriented Testing Metrics

 Encapsulation

o Lack of cohesion in methods (LCOM)

o Percent public and protected (PAP)

o Public access to data members (PAD)

 Inheritance

o Number of root classes (NOR)

o Fan in (FIN)

o Number of children (NOC)

o Depth of inheritance tree (DIT)

Maintenance Metrics

 Software Maturity Index (IEEE Standard 982.1-1988)

 SMI approaches 1.0 as product begins to stabilize

Project Management Concepts

Overview

 Project management involves the planning, monitoring, and control of people, process, and

events that occur during software development.

Page 64 of 77

 Everyone manages, but the scope of each person's management activities varies according his

or her role in the project.

 Software needs to be managed because it is a complex undertaking with a long duration time.

 Managers must focus on the fours P's to be successful (people, product, process, and project).

 A project plan is a document that defines the four P's in such a way as to ensure a cost

effective, high quality software product.

 The only way to be sure that a project plan worked correctly is by observing that a high

quality product was delivered on time and under budget.

Management Spectrum

 People (recruiting, selection, performance management, training, compensation, career

development, organization, work design, team/culture development)

 Product (product objectives, scope, alternative solutions, constraint tradeoffs)

 Process (framework activities populated with tasks, milestones, work products, and QA

points)

 Project (planning, monitoring, controlling)

People

 Stakeholders (senior managers, project managers, practitioners, customers, end-users)

 Team leadership model (motivation, organization, innovation)

 Characteristics of effective project managers (problem solving, managerial identity,

achievement, influence and team building)

Factors Affecting Team Organization

 Difficulty of problem to be solved

 Size of resulting program

 Team lifetime

 Degree to which problem can be modularized

 Required quality and reliability of the system to be built

 Rigidity of the delivery date

 Degree of communication required for the project

Team Organizational Paradigms

 Closed paradigm (top level problem solving and internal coordination managed by team

leader, good for projects that repeat past efforts)

 Random paradigm (team loosely structured success depends on initiative of individual team

members, paradigm excels when innovation and technical breakthroughs required)

 Open paradigm (rotating task coordinators and group consensus, good for solving complex

problems – not always efficient as other paradigms)

 Synchronous paradigm (relies on natural problem compartmentalization and team organized

to require little active communication with each other)

Page 65 of 77

Toxic Team Environment Characteristics

1. Frenzied work atmosphere where team members waste energy and lose focus on work

objectives

2. High frustration and group friction caused by personal, business, or technological problems

3. Fragmented or poorly coordinated procedures or improperly chosen process model blocks

accomplishments

4. Unclear role definition that results in lack of accountability or finger pointing

5. Repeated exposure to failure that leads to loss of confidence and lower morale

Agile Teams

 Teams have significant autonomy to make their own project management and technical

decisions

 Planning kept to minimum and is constrained only by business requirements and

organizational standards

 Team self-organizes as project proceeds to maximum contributes of each individual’s talents

 May conduct daily (10 – 20 minute) meeting to synchronized and coordinate each day’s work

o What has been accomplished since the last meeting?

o What needs to be accomplished by the next meeting?

o How will each team member contribute to accomplishing what needs to be done?

o What roadblocks exist that have to be overcome?

Coordination and Communication Issues

 Formal, impersonal approaches (e.g. documents, milestones, memos)

 Formal interpersonal approaches (e.g. review meetings, inspections)

 Informal interpersonal approaches (e.g. information meetings, problem solving)

 Electronic communication (e.g. e-mail, bulletin boards, video conferencing)

 Interpersonal networking (e.g. informal discussion with people other than project team

members)

The Product

 Software scope (context, information objectives, function, and performance)

 Problem decomposition (partitioning or problem elaboration - focus is on functionality to be

delivered and the process used to deliver it)

The Process

 Process model chosen must be appropriate for the:

o customers and developers

o characteristics of the product

o project development environment

 Project planning begins with melding the product and the process

 Each function to be engineered must pass though the set of framework activities defined for a

software organization

Page 66 of 77

 Work tasks may vary but the common process framework (CPF) is invariant (project size

does not change the CPF)

 The detail of the actual work tasks used to complete each framework activity and dependent

on the size and complexity of the project

 The job of the software engineer is to estimate the resources required to move each function

though the framework activities to produce each work product

 Project decomposition begins when the project manager tries to determine how to accomplish

each CPF activity

Signs of Potential Project Failure

1. Developers do not understand customer’s needs

2. Product scope poorly defined

3. Changes poorly managed

4. Chosen technology changes

5. Business needs change or ill-defined

6. Deadlines unrealistic

7. Users are resistant

8. Sponsorship lost or never obtained

9. Project team members lack appropriate skills

10. Managers and practitioners avoid best practices and lessons learned

Avoiding Project Failure

1. Start on the right foot

2. Maintain momentum

3. Track progress

4. Make smart decisions

5. Conduct a postmortem analysis

W5HH Principle

 Why is the system being developed?

 What will be done by When?

 Who is responsible for a function?

 Where are they organizationally located?

 How will the job be done technically and managerially?

 How much of each resource is needed?

Critical Practices

 Formal risk management

 Empirical cost and schedule estimation

 Metric-based project management

 Earned value tracking

 Defect tracking against quality targets

 People-aware program management

Page 67 of 77

Process and Project Metrics

Overview

Software process and project metrics are quantitative measures that enable software engineers to

gain insight into the efficiency of the software process and the projects conducted using the

process framework. In software project management, we are primarily concerned with

productivity and quality metrics. There are four reasons for measuring software processes,

products, and resources (to characterize, to evaluate, to predict, and to improve).

Process and Project Metrics

 Metrics should be collected so that process and product indicators can be ascertained

 Process metrics used to provide indictors that lead to long term process improvement

 Project metrics enable project manager to

o Assess status of ongoing project

o Track potential risks

o Uncover problem are before they go critical

o Adjust work flow or tasks

o Evaluate the project team’s ability to control quality of software wrok products

Process Metrics

 Private process metrics (e.g. defect rates by individual or module) are only known to by the

individual or team concerned.

 Public process metrics enable organizations to make strategic changes to improve the

software process.

 Metrics should not be used to evaluate the performance of individuals.

 Statistical software process improvement helps and organization to discover where they are

strong and where are week.

Statistical Process Control

1. Errors are categorized by their origin

2. Record cost to correct each error and defect

3. Count number of errors and defects in each category

4. Overall cost of errors and defects computed for each category

5. Identify category with greatest cost to organization

6. Develop plans to eliminate the most costly class of errors and defects or at least reduce their

frequency

Project Metrics

Page 68 of 77

 A software team can use software project metrics to adapt project workflow and technical

activities.

 Project metrics are used to avoid development schedule delays, to mitigate potential risks,

and to assess product quality on an on-going basis.

 Every project should measure its inputs (resources), outputs (deliverables), and results

(effectiveness of deliverables).

Software Measurement

 Direct process measures include cost and effort.

 Direct process measures include lines of code (LOC), execution speed, memory size, defects

rep orted over some time period.

 Indirect product measures examine the quality of the software product itself (e.g.

functionality, complexity, efficiency, reliability, maintainability).

Size-Oriented Metrics

 Derived by normalizing (dividing) any direct measure (e.g. defects or human effort)

associated with the product or project by LOC.

 Size oriented metrics are widely used but their validity and applicability is widely debated.

Function-Oriented Metrics

 Function points are computed from direct measures of the information domain of a business

software application and assessment of its complexity.

 Once computed function points are used like LOC to normalize measures for software

productivity, quality, and other attributes.

 The relationship of LOC and function points depends on the language used to implement the

software.

Reconciling LOC and FP Metrics

 The relationship between lines of code and function points depends upon the programming

language that is used to implement the software and the quality of the design

 Function points and LOC-based metrics have been found to be relatively accurate predictors

of software development effort and cost

 Using LOC and FP for estimation a historical baseline of information must be established.

Object-Oriented Metrics

 Number of scenario scripts (NSS)

 Number of key classes (NKC)

 Number of support classes (e.g. UI classes, database access classes, computations classes,

etc.)

 Average number of support classes per key class

 Number of subsystems (NSUB)

Page 69 of 77

Use Case-Oriented Metrics

 Describe (indirectly) user-visible functions and features in language independent manner

 Number of use case is directly proportional to LOC size of application and number of test

cases needed

 However use cases do not come in standard sizes and use as a normalization measure is

suspect

 Use case points have been suggested as a mechanism for estimating effort

WebApp Project Metrics

 Number of static Web pages (Nsp)

 Number of dynamic Web pages (Ndp)

 Customization index: C = Nsp / (Ndp + Nsp)

 Number of internal page links

 Number of persistent data objects

 Number of external systems interfaced

 Number of static content objects

 Number of dynamic content objects

 Number of executable functions

Software Quality Metrics

 Factors assessing software quality come from three distinct points of view (product

operation, product revision, product modification).

 Software quality factors requiring measures include

o correctness (defects per KLOC)

o maintainability (mean time to change)

o integrity (threat and security)

o usability (easy to learn, easy to use, productivity increase, user attitude)

 Defect removal efficiency (DRE) is a measure of the filtering ability of the quality assurance

and control activities as they are applied through out the process framework

DRE = E / (E + D)

E = number of errors found before delivery of work product

D = number of defects found after work product delivery

Integrating Metrics with Software Process

 Many software developers do not collect measures.

 Without measurement it is impossible to determine whether a process is improving or not.

 Baseline metrics data should be collected from a large, representative sampling of past

software projects.

 Getting this historic project data is very difficult, if the previous developers did not collect

data in an on-going manner.

Page 70 of 77

Arguments for Software Metrics

 If you don’t measure you have no way of determining any improvement

 By requesting and evaluating productivity and quality measures software teams can establish

meaningful goals for process improvement

 Software project managers are concerned with developing project estimates, producing high

quality systems, and delivering product on time

 Using measurement to establish a project baseline helps to make project managers tasks

possible

Baselines

 Establishing a metrics baseline can benefit portions of the process, project, and product levels

 Baseline data must often be collected by historical investigation of past project (better to

collect while projects are on-going)

 To be effective the baseline data needs to have the following attributes:

o data must be reasonably accurate, not guesstimates

o data should be collected for as many projects as possible

o measures must be consistent

o applications should be similar to work that is to be estimated

Metrics for Small Organizations

 Most software organizations have fewer than 20 software engineers.

 Best advice is to choose simple metrics that provide value to the organization and don’t

require a lot of effort to collect.

 Even small groups can expect a significant return on the investment required to collect

metrics, if this activity leads to process improvement.

Establishing a Software Metrics Program

1. Identify business goal

2. Identify what you want to know

3. Identify subgoals

4. Identify subgoal entities and attributes

5. Formalize measurement goals

6. Identify quantifiable questions and indicators related to subgoals

7. Identify data elements needed to be collected to construct the indicators

8. Define measures to be used and create operational definitions for them

9. Identify actions needed to implement the measures

10. Prepare a plan to implement the measures

Page 71 of 77

Estimation for Software Projects

Overview

Software planning involves estimating how much time, effort, money, and resources will be

required to build a specific software system. After the project scope is determined and the

problem is decomposed into smaller problems, software managers use historical project data (as

well as personal experience and intuition) to determine estimates for each. The final estimates

are typically adjusted by taking project complexity and risk into account. The resulting work

product is called a project management plan. Managers will not know that they have done a good

job estimating until the project post mortem. It is essential to track resources and revise estimates

as a project progresses.

Project Planning Objectives

 To provide a framework that enables software manager to make a reasonable estimate of

resources, cost, and schedule.

 ‘Best case’ and ‘worst case’ scenarios should be used to bound project outcomes.

 Estimates should be updated as the project progresses.

Estimation Reliability Factors

 Project complexity

 Project size

 Degree of structural uncertainty (degree to which requirements have solidified, the ease with

which functions can be compartmentalized, and the hierarchical nature of the information

processed)

 Availability of historical information

Project Planning Process

1. Establish project scope

2. Determine feasibility

3. Analyze risks

4. Determine requires resources

a. Determine required human resources

b. Define reusable software resources

c. Identify environmental resources

5. Estimate cost and effort

a. Decompose the problem

b. Develop two or more estimates

c. Reconcile the estimates

6. Develop project schedule

a. Establish a meaningful task set

b. Define task network

c. Use scheduling tools to develop timeline chart

Page 72 of 77

d. Define schedule tracking mechanisms

Software Scope

 Describes the data to be processed and produced, control parameters, function, performance,

constraints, external interfaces, and reliability.

 Often functions described in the software scope statement are refined to allow for better

estimates of cost and schedule.

Customer Communication and Scope

 Determine the customer's overall goals for the proposed system and any expected benefits.

 Determine the customer's perceptions concerning the nature if a good solution to the

problem.

 Evaluate the effectiveness of the customer meeting.

Feasibility

 Technical feasibility is not a good enough reason to build a product.

 The product must meet the customer's needs and not be available as an off-the-shelf

purchase.

Estimation of Resources

 Human Resources (number of people required and skills needed to complete the development

project)

 Reusable Software Resources (off-the-shelf components, full-experience components,

partial-experience components, new components)

 Environment Resources (hardware and software required to be accessible by software team

during the development process)

Software Project Estimation Options

 Delay estimation until late in the project.

 Base estimates on similar projects already completed.

 Use simple decomposition techniques to estimate project cost and effort.

 Use empirical models for software cost and effort estimation.

 Automated tools may assist with project decomposition and estimation.

Decomposition Techniques

 Software sizing (fuzzy logic, function point, standard component, change)

 Problem-based estimation (using LOC decomposition focuses on software functions, using

FP decomposition focuses on information domain characteristics)

Page 73 of 77

 Process-based estimation (decomposition based on tasks required to complete the software

process framework)

 Use-case estimation (promising, but controversial due to lack of standardization of use cases)

Causes of Estimation Reconciliation Problems

 Project scope is not adequately understood or misinterpreted by planner

 Productivity data used for problem-based estimation techniques is inappropriate or obsolete

for the application

Empirical Estimation Models

 Typically derived from regression analysis of historical software project data with estimated

person-months as the dependent variable and KLOC, FP, or object points as independent

variables.

 Constructive Cost Model (COCOMO) is an example of a static estimation model.

 COCOMO II is a hierarchy of estimation models that take the process phase into account

making it more of dynamic estimation model.

 The Software Equation is an example of a dynamic estimation model.

Estimation for Object-Oriented Projects

1. Develop estimates using effort decomposition, FP analysis, and any other method that is

applicable for conventional applications.

2. Using the requirements model (Chapter 6), develop use cases and determine a count.

Recognize that the number of use cases may change as the project progresses.

3. From the requirements model, determine the number of key classes (called analysis classes in

Chapter 6).

4. Categorize the type of interface for the application and develop a multiplier for support

classes

5. Multiply the number of key classes (step 3) by the multiplier to obtain an estimate for the

number of support classes.

6. Multiply the total number of classes (key + support) by the average number of work-units per

class.

7. Cross check the class-based estimate by multiplying the average number of work-units per

use case.

Estimation for Agile Development

1. Each user scenario is considered separately

2. The scenario is decomposed into a set of engineering tasks

3. Each task is estimated separately

a. May use historical data, empirical model, or experience

b. Scenario volume can be estimated (LOC, FP, use-case count, etc.)

4. Total scenario estimate computed

a. Sum estimates for each task

b. Translate volume estimate to effort using historical dsata

Page 74 of 77

5. The effort estimates for all scenarios in the increment are summed to get an increment

estimate

Estimation for WebApp Projects

 Modify the function point estimation procedure as follows

o Inputs are each input screen or form, each maintenance screen, and if you use a tab

notebook metaphor each tab.

o Outputs are each static Web page, each dynamic web page script and each report

o Tables are each logical table in the database plus, if you are using XML to store data in a

file, each XML object (or collection of XML attributes).

o Interfaces retain their definition as logical files into our out-of-the-system boundaries.

o Queries are each externally published or use a message-oriented interface.

Make-Buy Decision

 It may be more cost effective to acquire a piece of software rather than develop it.

 Decision tree analysis provides a systematic way to sort through the make-buy decision.

 As a rule outsourcing software development requires more skillful management than in-

house development of the same product.

Risk Management

Overview

Risks are potential problems that might affect the successful completion of a software project.

Risks involve uncertainty and potential losses. Risk analysis and management is intended to help

a software team understand and manage uncertainty during the development process. The

important thing is to remember that things can go wrong and to make plans to minimize their

impact when they do. The work product is called a Risk Mitigation, Monitoring, and

Management Plan (RMMM) or a set of Risk Information Sheets (RIS).

Risk Strategies

 Reactive strategies - very common, also known as fire fighting, project team sets resources

aside to deal with problems and does nothing until a risk becomes a problem

 Proactive strategies - risk management begins long before technical work starts, risks are

identified and prioritized by importance, then team builds a plan to avoid risks if they can or

minimize them if the risks turn into problems

Software Risks

 Project risks - threaten the project plan

 Technical risks - threaten product quality and the timeliness of the schedule

Page 75 of 77

 Business risks - threaten the viability of the software to be built (market risks, strategic risks,

sales risks, management risks, budget risks)

 Known risks - predictable from careful evaluation of current project plan and those

extrapolated from past project experience

 Unknown risks - some problems simply occur without warning

Risk Identification

 Product-specific risks - the project plan and software statement of scope are examined to

identify any special characteristics of the product that may threaten the project plan

 Generic risks - are potential threats to every software product (product size, business impact,

customer characteristics, process definition, development environment, technology to be

built, staff size and experience)

Risk Checklist Items

 Product size

 Business impact

 Stakeholder characteristics

 Process definition

 Development environment

 Technology to be built

 Staff size and experience

Risk Assessment Questions

1. Have top software and customer managers formally committed to support the project?

2. Are end-users enthusiastically committed to the project?

3. Are requirement fully understood by developers and customers?

4. Were customers fully involved in requirements definition?

5. Do end-users have realistic expectations?

6. Is project scope stable?

7. Does software team have the right skill set?

8. Are project requirements (scope) stable?

9. Does the project team have experience with technology to be implemented?

10. Is the number of people on project team adequate to do the job?

11. Do all stakeholders agree on the importance of the project the requirements for the systems

being built?

Risk Impact

 Risk components - performance, cost, support, schedule

 Risk impact - negligible, marginal, critical, catastrophic

 The risk drivers affecting each risk component are classified according to their impact

category and the potential consequences of each undetected software fault or unachieved

project outcome are described

Page 76 of 77

Risk Projection (Estimation)

1. Establish a scale that reflects the perceived likelihood of each risk

2. Delineate the consequences of the risk

3. Estimate the impact of the risk on the project and product

4. Note the overall accuracy of the risk projection to avoid misunderstandings

Risk Table Construction

 List all risks in the first column of the table

 Classify each risk and enter the category label in column two

 Determine a probability for each risk and enter it into column three

 Enter the severity of each risk (negligible, marginal, critical, catastrophic) in column four

 Sort the table by probability and impact value

 Determine the criteria for deciding where the sorted table will be divided into the first

priority concerns and the second priority concerns

 First priority concerns must be managed (a fifth column can be added to contain a pointer

into the RMMM)

Assessing Risk Impact

 Factors affecting risk consequences - nature (types of problems arising), scope (combines

severity with extent of project affected), timing (when and how long impact is felt)

 If costs are associated with each risk table entry Halstead's risk exposure metric can be

computed (RE = Probability * Cost) and added to the risk table.

Risk Assessment

1. Define referent levels for each project risk that can cause project termination (performance

degradation, cost overrun, support difficulty, schedule slippage).

2. Attempt to develop a relationship between each risk triple (risk, probability, impact) and each

of the reference levels.

3. Predict the set of referent points that define a region of termination, bounded by a curve or

areas of uncertainty.

4. Try to predict how combinations of risks will affect a referent level.

Risk Refinement

 Process of restating the risks as a set of more detailed risks that will be easier to mitigate,

monitor, and manage.

 CTC (condition-transition-consequence) format may be a good representation for the detailed

risks (e.g. given that <condition> then there is a concern that (possibly) <consequence>).

Risk Mitigation, Monitoring, and Management

Page 77 of 77

 Risk mitigation (proactive planing for risk avoidance)

 Risk monitoring

o Assessing whether predicted risks actually occur

o Ensuring risk aversion steps are being properly applied

o Collecting information for future risk analysis, attempt to determine which risks caused

which problems

o Determining what risks cause which project problems

 Risk management and contingency planing (actions to be taken in the event that mitigation

steps have failed and the risk has become a live problem)

Safety Risks and Hazards

 Risks are also associated with software failures that occur in the field after the development

project has ended.

 Computers control many mission critical applications in modern times (weapons systems,

flight control, industrial processes, etc.).

 Software safety and hazard analysis are quality assurance activities that are of particular

concern for these types of applications and are discussed later in the text.

Risk Information Sheets

 Alternative to RMMM in which each risk is documented individually.

 Often risk information sheets (RIS) are maintained using a database system.

 RIS components - risk id, date, probability, impact, description, refinement,

mitigation/monitoring, management/contingency/trigger, status, originator, assigned staff

member.

